Dynamics and diagnosis of protostellar disks with consistent thermochemistry

Lile Wang Jeremy Goodman Xue-Ning Bai

Stars, Planets, and Galaxies 13-18 April, 2018 Berlin

Apropos this morning's talks

It is a profoundly erroneous truism, repeated by all copy-books and by eminent people when they are making speeches, that we should cultivate the habit of thinking of what we are doing. The precise opposite is the case. **Civilization advances by extending the number of important operations which we can perform without thinking about them.** Operations of thought are like cavalry charges in a battle they are strictly limited in number, they require fresh horses. It must only be made at decisive moments.

—Alfred North Whitehead (with apologies to John Lattanzio)

A sad spectacle. If they be inhabited, what a scope for misery and folly. If they be not inhabited, what a waste of space.

—Thomas Carlyle (with apologies to Didier Queloz)

Outline

- Observational constraints on accretion, photoevaporation, and winds
- ✦ The need for realistic thermochemistry in dynamical models
- ✦ Hydrodynamic photo-evaporation
- Magnetohydrodynamic photoevaporation
- ✦ Appendix: Accretion in transitional disks

Accretion rates of PPDs are measured

... As are their stars' hard-photon luminosities

 $\log(L_{hard} / L_{bol}) \approx -3 \pm 0.5$

$$\begin{aligned} t_{\text{evap}} \gtrsim & \frac{GM_*M_{\text{d}}}{2\eta L_{\text{hard}}r_{\text{d}}} \\ &\sim 10^6 \eta_{0.1}^{-1} \left(\frac{M_{\text{d}}}{0.015M_{\odot}}\right) \left(\frac{r_{\text{d},\text{h}}}{10\text{AU}}\right)^{-1} \text{yr} \end{aligned}$$

Single-peaked CO ro-vibrational lines suggest a slow, wide-angle wind

Mechanisms for angular momentum transport and turbulence

- ✦ Hydrodynamic mechanisms:
 - * High-Reynolds-number turbulence driven by radial shear
 - * Thermally supported instabilities (leading to turbulence)
 - vertical convection
 - Baroclinic (radial entropy gradient) in-/over-stability
 - Vertical shearing/Goldreich-Schubert-Fricke instability
 - * Planetary density-wave wakes
 - * Self-gravity
- ✦ Magnetic mechanisms:
 - * Magnetorotational instability
 - * Magnetized winds

Mechanisms for angular momentum transport and turbulence

- ✦ Hydrodynamic mechanisms:
 - * High Reynolds number turbulence driven by radial shear
 - * Thermally supported instabilities (leading to turbulence)
 - vertical convection
 - Baroclinic (radial entropy gradient) instability
 - Vertical shearing/Goldreich-Schubert-Fricke instability
 - * Planetary density-wave wakes
 - * Self-gravity
- ✦ Magnetic mechanisms:
 - * Magnetorotational instability
 - * Magnetized winds

Minimal magnetic fields for accretion

✦ MRI-driven accretion:

$$(-B_R B_{\phi})^{1/2} \approx \left(\frac{\dot{M}_{\rm acc} \Omega}{H}\right)^{1/2} \approx 0.5 \,\dot{M}_{-8}^{1/2} r_{\rm AU}^{-11/8} \,\text{Gauss}$$

✦ Wind-driven accretion:

$$(-B_z B_\phi)^{1/2} \approx \left(\frac{\dot{M}_{\rm acc} \Omega}{2R}\right)^{1/2} \approx 0.07 \ \dot{M}_{\rm acc}^{1/2} r_{\rm AU}^{-5/4} \ \text{Gauss}$$

• Winds allow fields to be weaker by ~ $(H/R)^{1/2}$

Past work on photoevaporation of PPDs

- Hollenbach, Johnstone, Lizano, & Shu (1994)
 * EUV only; analytic
- ✦ Font, McCarthy, Johnstone, & Ballantyne (2004)

* EUV + 2D hydro (ZEUS); $c_s \rightarrow 10 \text{ km s}^{-1}$

- * Microphysics post-hoc, including forbidden-line predictions
- ◆ Alexander, Clarke, & Pringle (2006): similar to Font et al. '04
- ◆ Gorti & Hollenbach (2008, 2009)
 - * FUV, EUV, & X-rays
 - * Detailed microphysics, analytic hydro (spherical Parker wind)
- ◆ Owen, Ercolano, Clarke, & Alexander (2010)
 - * EUV & X-rays; temperature via lookup table in ionization parameter
 * 2D hydro (ZEUS) w.

Why thermochemistry?

- ✦ To get the dynamics right.
 - * The flow depends strongly on gas temperature, molecular weight, and (when magnetized) ionization level.
- ✦ To confront observations.
 - * There is a wealth of atomic [OI, NeII, ...] and molecular [CO, $H_2O,...$] line data that may constrain winds & turbulence.
 - * Much of the chemistry for this purpose could be modeled in postprocessing, but reactions are not always in local equilibrium.
 - E.g., flow and dissociation timescales for CO can be comparable at the wind base.

Methods: Chemistry

✦ Reduced set of chemical ``species", including grains:

- * Non-MHD runs: e⁻, H⁺, H, H₂, H₂*, He, He⁺, O, O⁺, O^{*}, OH, H₂O, C, C⁺, CO, S, S⁺, Si, Si⁺, Fe, Fe⁺, Gr, Gr⁺, Gr⁻ [24 species]
- * MHD runs: as above, plus OH+, HCO+, CH+, SiO, SiO+; minus O*, Fe, Fe+ [26 species]
- ✦ Reactions involving these species:
 - * 2-body reactions from UMIST 2012
 - * Photoionization/photodissociation reactions (various sources)
 - * Dust reactions: molecule formation, charge exchange
- ✦ Reactions are computed on a GPU
 - * ~ 100-fold speedup compared to CPUs

Methods: Radiation

- ✦ Ray tracing from r=0 for FUV, EUV, X-rays
 - * Plus (with MHD) vertical diffusion of X-rays in disk, following Igea
 & Glassgold (1999)
 - * Diffuse Ly α tested (via Monte Carlo) but found unimportant
- ✦ A floor is set on the dust temperature in the disk, to avoid having to calculate the diffuse IR field
- ✦ Prescriptions for ``pre-absorption" of low-latitude hard photons interior to inner boundary (r < 1 AU)</p>

Methods: Temperature

✦ <u>Heating</u>:

- * ionization by EUV & X-rays
- * photodissociation with self- & cross-shielding of H_2 & CO
- * H₂ excitation by Lyman-Werner photons $(13.6 > h\nu > 11.3 \text{ eV})$
- * photoelectric emission by grains
- * thermal accommodation on dust
- ✦ Cooling:
 - * Atomic recombination
 - * Atomic forbidden lines
 - * Ro-vibrational lines (CO, OH, H₂O) w. escape probability
 - * Thermal accommodation on dust

Methods: Hydro and MHD

- ✦ Athena++
- ✦ Axisymmetric (2.5D), also symmetric about midplane
- ✦ Spherical polars
 - * Logarithmic grid in $r \in (1,50)/(2,100)$ AU; 256/384 zones typically
 - * Linear grid in $\theta \in (0, \pi/2)$; 128 zones
- ✦ Non-ideal MHD via tensorial diffusivity
 - * Ohmic and ambipolar terms, but not Hall
- ✦ Disk initial conditions after Nelson et al. (2013)

Flow structure in the fiducial hydro model

Heating processes

Cooling processes

Mass loss rates of hydrodynamic models

◆ Our Mdot is 5-10x less than GH09 for similar parameters

◆ X-rays alone (w/o EUV) yield very little mass loss, unless

- * we omit coolants that OEAC10 neglected,
- * or if $L_X \gg 10^{30.4}$ erg s⁻¹

Fiducial (no EUV) MHD run: Flow structure

<i>L</i> (7 eV) [erg s⁻¹]	<i>L</i> (12 eV)	<i>L</i> (25 eV)	<i>L</i> (3 keV)
dex(31.7)	dex(29.5)	0	dex(30.0)

Fiducial MHD run: Molecules

Fiducial MHD run: Molecules

Wind mass-loss rates: Hydro (w. EUV) vs. MHD (w/o EUV)

Mass loss & accretion: Main points

- ✦ Purely hydrodynamic models do not accrete.
- Our standard hydro models without EUV lose little mass.
 * unless X-rays are enhanced or cooling suppressed
- ✦ Mass loss (M_{wind}) is comparable to accretion (M_{acc}) for the minimally magnetized model [β₀=dex(-5), no EUV]
- ✦ Mass loss increases with magnetization (?)
 - * E.g., \dot{M}_{wind} increases ~×5 for $\beta_0 = dex(-4)$
- ← Adding EUV to MHD <u>decreases</u> \dot{M}_{wind} (by ~×1/2)
 - * A faster (~ 40 km s⁻¹), more energetic, but lower- \dot{M} wind

Transition disks

Maximal accretion speeds

♦ For both MRI & winds, $β = P_{gas}/P_{mag} ≥ 1$ within accreting layer.

At the same sound speed (c_s), the accreting density can be lower by O(H/R) when driven by a wind rather than MRI, possibly explaining how transition disks with large gas cavities continue to accrete at "normal" rates. (Wang & Goodman 2017a)

$$v_{
m acc,MRI} \lesssim c_{
m s} rac{H}{R}; \qquad v_{
m acc,wind} \lesssim c_{
m s}$$