Current state of research on biosignatures and exoplanet atmospheres

Enric Palle

Instituto de Astrofísica de Canarias

Stars, Planets and Galaxies 2018, Berlin

Exoplanet discoveries

Neptune

KOI-408.05

KOI-488.02

KOI-290.02

Earth

KOI-205.02 Mercury

PLANET SIZE (relative to Earth)

Transiting Planets: first detections of planetary atmospheres

Exoplanets: What have we learned so far?

• 20-30% solar-type stars with planets

- At least 1 planet per star
- Multiple (rocky) planetary systems are common
- Specially true for M-type stars, with a very large fraction of planetary occurrence rates
- Planets are everywhere

TRAPPIST-1

**

TRAPPIST-1 System

Habitable = Liquid Water

But these are not the only ones....

Artistic Concept

Planets and orbits to scale

Kepler-62 System

Potentially Habitab

Name

Ranked by Distance from Earth (lig 001. TRAPPIST-1 d

[4.2 ly] Proxima Cen b	[13 ly] Kapteyn b*	[22 ly] GJ 667 C c
	A CONTRACTOR	

Conservative Sample of Potentia

This is a list of the exoplanets that are more likely to have a rocky com $^{021.\ GJ\ 163\ c}$ Planet Radius \leq 1.5 Earth radii or 0.1 < Planet Minimum Mass \leq 5 Earth 022. Kepler-61 b habitable zone). They are represented artistically in the top image. 023. K2-18 b

				024. Kepler-1606
Name	Туре	Mass		025. Kepler-1090
		(M _E)		026. Kepler-443 b
001. Proxima Cen b	M-Warm Terran	≥ 1.3	0.8	027. Kepler-22 b
002. TRAPPIST-1 e	M-Warm Terran	0.6		028. <u>GJ 422 b*</u>
003. GJ 667 C c	M-Warm Terran	≥ 3.8	1.1	029. K2-9 b
004. Kepler-442 b	K-Warm Terran	8.2 - 2.3 - 1.0		030. Kepler-1552 031. GJ 3293 c*
005. GJ 667 C f*	M-Warm Terran	≥ 2.7	1.(032. Kepler-1540
006. Kepler-1229 b	M-Warm Terran	9.8 - 2.7 - 1.2		033. Kepler-298 d
007. TRAPPIST-1 f	M-Warm Terran	0.7		034. KIC-5522786
008. Kapteyn b*	M-Warm Terran	≥ 4.8	1.2	035. Kepler-174 d
009. Kepler-62 f	K-Warm Terran	10.2 - 2.8 - 1.2		036. Kepler-296 f
010. Kepler-186 f	M-Warm Terran	4.7 - 1.5 - 0.6		037. GJ 682 c*
011. GJ 667 C e*	M-Warm Terran	≥ 2.7	1.0	039 KOL-4427 b*
012. TRAPPIST-1 g	M-Warm Terran	1.3		

Name	Туре	Mass (ME)	Radius (R _E)	Flux (S _E)	т _{еq} (К)	Period (days)	Distance (ly)	ESI
001. TRAPPIST-1 d	M-Warm Subterran	0.4	0.8	1.15	264	4.0	39	0.90
002. GJ 3323 b (N)	M-Warm Terran	≥ 2.0	0.9 - 1.3 - 1.6	1.21	264	5.4	-	0.89
003. Kepler-438 b	M-Warm Terran	4.0 - 1.3 - 0.6	1.1	1.38	276	35.2	473	0.88
004. GJ 273 b (N)	M-Warm Terran	≥ 2.9	1.0 - 1.4 - 1.8	1.22	267	18.6	12	0.86
005. Kepler-296 e	M-Warm Terran	12.5 - 3.3 - 1.4	1.5	1.22	267	34.1	737	0.85
006. Kepler-62 e	K-Warm Superterran	18.7 - 4.5 - 1.9	1.6	1.10	261	122.4	1200	0.83
007. Kepler-452 b	G-Warm Superterran	19.8 - 4.7 - 1.9	1.6	1.11	261	384.8	1402	0.83
008. K2-72 e	M-Warm Terran	9.8 - 2.7 - 1.2	1.4	1.46	280	24.2	181	0.82
009. GJ 832 c	M-Warm Superterran	≥ 5.4	1.2 - 1.7 - 2.2	1.00	253	35.7	16	0.81
010. K2-3 d	M-Warm Terran	11.1	1.5	1.46	280	44.6	137	0.80
011. Kepler-1544 b	K-Warm Superterran	31.7 - 6.6 - 2.6	1.8	0.90	248	168.8	1138	0.80
012. Kepler-283 c	K-Warm Superterran	35.3 - 7.0 - 2.8	1.8	0.90	248	92.7	1741	0.79
013. tau Cet e*	G-Warm Terran	≥ 4.3	1.1 - 1.6 - 2.0	1.51	282	168.1	12	0.78
014. Kepler-1410 b	K-Warm Superterran	31.7 - 6.6 - 2.6	1.8	1.34	274	60.9	1196	0.78
015. GJ 180 c*	M-Warm Superterran	≥ 6.4	1.3 - 1.8 - 2.3	0.79	239	24.3	38	0.77
016. Kepler-1638 b	G-Warm Superterran	42.7 - 7.9 - 3.1	1.9	1.39	276	259.3	2866	0.76
017. Kepler-440 b	K-Warm Superterran	41.2 - 7.7 - 3.1	1.9	1.43	273	101.1	851	0.75
018. GJ 180 b*	M-Warm Superterran	≥ 8.3	1.3 - 1.9 - 2.4	1.23	268	17.4	38	0.75
019. Kepler-705 b	M-Warm Superterran	? - 12.7 - 4.8	2.1	0.83	243	56.1	818	0.74
020. HD 40307 g*	K-Warm Superterran	≥ 7.1	1.3 - 1.8 - 2.3	0.68	227	197.8	42	0.74
021. GJ 163 c	M-Warm Superterran	≥ 7.3	1.3 - 1.8 - 2.4	0.66	230	25.6	49	0.73
022. Kepler-61 b	K-Warm Superterran	? - 13.8 - 5.2	2.2	1.27	267	59.9	1063	0.73
023. K2-18 b	M-Warm Superterran	? - 16.5 - 6.0	2.2	0.92	250	32.9	111	0.73
024. Kepler-1606 b	G-Warm Superterran	? - 11.9 - 4.5	2.1	1.41	277	196.4	2869	0.73
025. Kepler-1090 b	G-Warm Superterran	? - 16.8 - 6.1	2.3	1.20	267	198.7	2289	0.72
026. Kepler-443 b	K-Warm Superterran	? - 19.5 - 7.0	2.3	0.89	247	177.7	2540	0.71
027. Kepler-22 b	G-Warm Superterran	? - 20.4 - 7.2	2.4	1.11	261	289.9	619	0.71
028. <u>GJ 422 b*</u>	M-Warm Superterran	≥ 9.9	1.4 - 2.0 - 2.6	0.68	231	26.2	41	0.71
029. K2-9 b	M-Warm Superterran	? - 16.8 - 6.1	2.2	1.38	276	18.4	359	0.71
030. Kepler-1552 b	K-Warm Superterran	? - 25.2 - 8.7	2.5	1.11	261	184.8	2015	0.70
031. GJ 3293 c*	M-Warm Superterran	≥ 8.6	1.4 - 1.9 - 2.5	0.60	223	48.1	59	0.70
032. Kepler-1540 b	K-Warm Superterran	? - 26.2 - 9.0	2.5	0.92	250	125.4	854	0.70
033. Kepler-298 d	K-Warm Superterran	? - 26.8 - 9.1	2.5	1.29	271	77.5	1545	0.68
034. KIC-5522786 b	A-Warm Terran	5.8 - 1.8 - 0.8	1.2	2.70	305	757.2	-	0.67
035. Kepler-174 d	K-Warm Superterran	? - 14.8 - 5.5	2.2	0.43	206	247.4	1174	0.61
036. Kepler-296 f	M-Warm Superterran	28.7 - 6.1 - 2.5	1.8	0.34	1 9 4	63.3	737	0.60
037. GJ 682 c*	M-Warm Superterran	≥ 8.7	1.4 - 1.9 - 2.5	0.37	198	57.3	17	0.59
038. Wolf 1061 d	M-Warm Superterran	≥ 5.2	1.2 - 1.7 - 2.2	0.28	182	67.3	14	0.56
039. KOI-4427 b*	M-Warm Superterran	38.5 - 7.4 - 3.0	1.8	0.24	179	147.7	782	0.52

Habitable ≠ Inhabited

How will we know? Biosignatures

Earth from an astronomical distance: All light comes from a single point

Cassini from Saturn

Which planet is inhabited?

The Earthshine on the moon

ES/MS = albedo (+ geometry and moon properties)

Photometry: continents, weather and rough maps

The spectrum of an inhabited planet

Simultaneous presence of:

- Water
- Ozone (Oxigen)
- Methane / Carbon Dioxide

These three gases cannot co-exist in the atmosphere of a planet without the presence of life.

Surface Biosignatures/Bioclues

Life changes the *Surface* of a planet

The terrestrial vegetation can be detected although the signal is small ...

Montañes-Rodriguez et al ApJ, 2006

A transiting Earth?

Eclipses as proxies for transits

© Daniel López

Earth's Transmission spectrum

Palle et al, Nature, 2009

Earth's Transmission vs Reflected spectrum

Blue planet?

Time evolution

Extrasolar planets are expected to exhibit a wide range of evolutionary stages, as the Earth did.

What was detectable in the past?

The Archean Earth

• The Earth has been inhabited for at least 85% of its history

• 3000 million years ago, the atmospheric composition was very different from today's and the Sun was $\sim 20\%$ less bright

• To study the possibility of detecting primitive life forms

Purple bacteria

- One of the first life forms that colonized our planet.
- Can inhabit both aquatic and terrestrial environments
- Anoxygenic photosynthesis
- Can survive in extreme conditions
- Color: red, brown or purple

Rotational variability

• Purple bacteria readily detectable in the cloud-free case and still visible in the cloudy case

Sanroma et al, ApJ, 2014

Biomarkers in Time

So, will we be able to detect biomarkers in the near future?

Transit spectroscopy: first detections of planetary atmospehres

One in 1,000-10,000 photons cross the planetary atmosphere

One in 100,000-1,000,000 photons cross the planetary atmosphere

Focus of searches: brightest and closest stars

PLATO - 2025

James Webb Space Telescope - 2018 Not habitable Earths in general (Hot Superearths) Atmospheric characterization via High-Res Spec (FOV, +AO) 2025-2030

Getting rid of the atmosphere:

The planet moves at different speed than the star

Carbon Monoxide 0.8 0.6 0.4 **Drbital Phase** 0.2 0.0 2308 2314 2310 2312 Wavelength (nm)

Snellen, 2010

CO in dayside spectra of hot Jupiters

CO in dayside spectrum of tau Bootis b (CRIRES@VLT)

(Brogi et al. Nature 2012 – see also Rodler et al. 2012)

Detection of biosignatures in Earth-like planets

Detection of oxygen in transmission

Snellen et al, 2013

Transmission spectroscopy

M dwarf Trappist 1 b & c:

- 1.3-1.7 um H₂O band at an SNR of 6 in two transits
- 0.9-1.1 um H₂O band in 4 transits
- CO₂ in 4 transits.
- molecular oxygen detected in 25 transits.

For these planets, the transit duration is less than 1 hour.

Exoplanet Atmospheres : transmission vs direct light

Probability of transits of Earth - Sun 0.5% Probability of transit of Earth – M star 1-2%

- We will only be able to explore in transmission 1/200 of the closest Sun-Earth twins
- We will only be able to explore in transmission 1/50 of the closest Earth-like planets around Mstars
- Probabilities and distances = **photons**

Transmission spectroscopy probes the (upper) atmosphere of the planet

Reflected light from telluric planets probes down to the surface, including surface features (biomarkers)

Direct detection of the planet's reflected light

AO+ IFU Reflected light crosscorrelation signal of the direct surroundings of Proxima, showing Proxima b at 48 mas

Cross-correlation signal from the planet can be seen at ~8 sigma level in 7 nights, assuming an AO system similar to that of MICADO

With EAO system (EPICS) 10 x faster

Inner Working Angle (IWA)

Starshade diameter 34 m

±1 m lateral control

Separation dis 37,000 kr ±250 km

Capable of exploring earth-like planet around solar-type stars

Word of caution: Relying on M stars

Sun

第十

It's not easy to live around an M-star

Barnes et al. 2016

Summary

- Planets are everywhere
- ELTs will be the first machines to have a shot at detecting biomarkers
- Stick to simple detection of atmospheric compositions
- Success will depend on
 - Actual rate for life development for HZ planets around M stars
 - Capability of the available instrumentation to explore a large enough sample of planets (including non-transiting)

