Pebble Accretion in Protoplanetary Disks Ruth Murray-Clay UC Santa Cruz

Graduate Students: Mickey Rosenthal, Diana Powell, Renata Frelikh

Image Credit: NASA

TW Hydra

Andrews et al. 2016

HR 8799: A testbed for planet formation theories

Marois et al. 2010

51 Eridani b

Only a few giant planets or brown dwarfs have been found at wide separations, despite extensive searches.

2-12 M_{Jup} 13 AU

Macintosh et al. (2015)

Solids grow through collisions in the disk

t_{grow} increases as t_{orb} increases

More material means faster growth

HR 8799: A testbed for planet formation theories

Marois et al. 2010

Kratter, Murray-Clay, & Youdin, ApJ 2010

Gravitational instability planets can only be failed binary stars

The possibility of a third Gravitational Instability population isn't dead.

Bowler (2016)

Wide separation giants:

How far out can core accretion produce giants?

Should we have seen them?

Core accretion:

Need to grow a massive solid core through collisions Longstanding problem: The last doubling time.

Cross-section regimes:

Final stage of core growth too slow at distance of HR 8799 outer planet given standard theory Capture by gas drag allows fast enough growth to nucleate a massive atmosphere

Gas Alters the Orbits of Single Planetesimals

In the absence of gas, satellites can orbit within the Hill radius

Gas: No gas: Satellites can orbit Wind Shearing (WISH) within the "Hill radius" R_{Hill} R_{Hill} planetesimal core **R**_{WISH}

gas drag small acceleration is large

Perets & Murray-Clay (2011)

For Small Planetesimals, Merger Times < Disk Lifetimes

Perets & Murray-Clay (2011)

"Binary Capture"

dissipation due to interaction with gas

Ormel & Klahr 2010; Lambrechts & Johansen 2012; Rosenthal, Murray-Clay, Perets, & Wolansky subm.

Capture can happen with a cross-section as large as the Hill radius

Well-entrained particles can be swept around the core, preventing accretion

Capture by the atmosphere is only possible if the small particle can decouple from the exterior gas.

Growth times at 70 AU can be short enough to nucleate an atmosphere

SURFACE DENSITY IN 0.1 - 1 MM SIZED PARTICLES

Turbulence doesn't prevent the final stage of core growth by capture of planetesimals

Xu, Bai, & Murray-Clay 2017

Turbulence doesn't prevent the final stage of core growth

Rosenthal, Murray-Clay, Perets, & Wolansky subm.

Gas-assisted growth depends strongly on planetesimal size. Turbulence impedes growth for smaller planetesimals.

Rosenthal, Murray-Clay, Perets, & Wolansky subm.

Perets, & Wolansky subm.

How do cores get big enough for pebble accretion to begin?

Scattering from the interior is a possibility

Standard planetesimal growth is another

Predicted distance at which giant planets can form as a function of turbulence strength.

Rosenthal & Murray-Clay, subm.

Gap starvation may determine final masses

Bowler (2016)

Hypothesis:

Perhaps gas giants are more common than we think, just less massive than direct imaging limits. Predicted distance at which giant planets can form as a function of turbulence strength.

Accretion of small (e.g. mm) solid material by planets depends strongly on particle size (really aerodynamic properties)

So

Variation in the particle size distribution across the disk affects where planetary cores can grow quickly

TW Hydra

ALMA

Andrews et al. 2016

Protoplanetary disks appear smaller at longer wavelengths

for well-coupled dust, larger particles drift inward more quickly

Birnstiel & Andrews 2015, Menu et al. 2014, L.I. Cleeves, Andrews et al. 2012, Debes et al. 2013, images from presentation by Sean Andrews May 2016

A new way to derive surface density

Powell, Murray-Clay, & Schlichting 2017

Normalized CO Surface Density Profile

 $\frac{\Sigma_{\rm c} \sim 300 \text{ g cm}^{-2}}{X_{\rm CO} \sim 3 \times 10^{-7}}$

Powell, Murray-Clay, & Schlichting 2017

Upshot: Observed disks may be orders of magnitude more massive than previously thought.

At least some close to Q=1 gravitational stability limit (though the images of symmetric disks can't quite be at Q=1)

See Powell et al. (2017) for the additional tests that we propose to validate our model.

Pebble accretion poses a fine-tuning problem for the intermediate-mass atmospheres of Uranus and Neptune.

Frelikh & Murray-Clay 2017

Gas-assisted growth (pebble accretion) is a size-dependent dynamical capture process that likely has important implications for planet formation

(Imperfect) Analogies:

Formation of Kuiper belt binaries by dynamical friction with a sea of small bodies

Accretion of dwarf galaxies by dynamical friction

Hardening of stellar binaries

Stellar binary formation in the galactic center (Doug's talk)