Black Holes and Active Galactic Nuclei
across the Universe




Indirect observational evidence that black hole formation/growth
may influence/regulate the formation of the host galaxy

Relation between black hole mass
(parsec-scale measurements) and
bulge velocity dispersion (kpc-
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Some popular theoretical conjectures about the physical
processes that link the formation of black holes and galaxies

1) Following the formation of a “seed” black hole at high redshifts, black hole
growth occurs during major merging events that are visible
as quasars (Kauffmann & Haehnelt 2000)

Model assumption: during a merger a fixed fraction of available gas is accreted by black
hole, 0.1 Mc”2 of the rest mass energy is radiated.

In addition to the properties of the galaxy population, models shown to reproduce 2 key
observables: black hole mass/bulge mass relation and QSO luminosity function
evolution.
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# (h3 Mpc=3 mag~1)

2) Black hole growth causes significant energy to be transferred to the gas in and
around galaxies on scales of hundreds of kiloparsecs, which influences the future
evolution of the galaxy — i.e. the black hole does not merely form long with the

galaxy, it regulates galaxy growth and star formation.

TWO CLASSES OF AGN FEEDBACK

MODEL.:

A) Those that focus on the role of AGN

feedback in regulating the build-up of the most

massive galaxies in the local Universe.
(the feedback sources that heat the gas on

large scales are NOT those that mark out the

main phases of black hole growth)
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2) Those that include feedback as part of the merging events that form black holes
and fuel quasars. These models do not usually attempt to make detailed predictions
for the statistical properties of the galaxy population.

1996: too much gas sinks to the center of 2005: the gas is blown out in a “wind”
the merger remnant Barnes & Hernquist Di Matteo, Springel, Hernquist
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Status of Observational Constraints

Sloan Digital Sky
Survey




LOG ([OlI)/Hp)

Emission line diagnostic diagrams for identification
of AGN through emission-line ratios
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The [Olll] Line Luminosity as a Black Hole Accretion
rate indicator
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Deep wide-field
radio surveys can
be cross-correlated
with SDSS optical

surveys
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Radio synchrotron emission arises
from electrons accelerated in
supernovae shocks: correlation between
radio emission and star formation rate as
measured by Halpha emission

Radio AGN can be identified by their
excess radio luminosity with respect
to this correlation




Which black holes are currently accreting?
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Distribution of accretion rates (in units of the Eddington
accretion rate) for black holes of different mass
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Percentage

% of gals that are radio-loud AGN
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Two-point correlation function defined as
the excess probability to find two galaxies
separated by distance r, compared to a

dVs

I'io

randomly-distributed sample.

The cross-correlation function star-forming galaxies
compared to AGN.
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Lopsided galaxy
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No evidence for excess of
lopsided AGN hosts compared to
matched control samples of non-
AGN

Symmetric galaxy

The bulk of the black hole growth since z~1 occurs in a secular
universe: No major merger-AGN connection
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Radio-loud AGN are more strongly
clustered than control samples —
frequently found in the BCG (brightest
cluster galaxy)
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CAVEAT: analyses so far have been confined to the full sample of AGN,
dominated by number by low-luminosity, low accretion-rate systems

Core of Galaxy NGC 426l
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In recent work, | have
considered AGN selected
by their mid-IR properties.
Strong mid-IR emission is
an indicator of dust heated
to high temperatures, as
would be expected for the
central regions of an AGN



STEP 1: Select galaxies with mid-IR colours that are too red
to be explained by their stellar populations ==> clear
evidence of hot dust emission

(Note that most previous statistical studies stop here and call
these object AGN)
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STEP 2: Sanity check on the AGN
hypothesis. Do we see evidence for
centrally peaked W2 emission
consistent with a torus?

Answer: In 98% of cases, the
answer is NO.
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What are the non-AGN with
strong mid-IR emission?

Hot dust in ellipticals imaged in
the X-ray has been found to
follow the plasma distribution
Indicating stochastic heating
by hot electron collisions.

What is the best predictor for
Centrally peaked mid-IR
emission?

Answer: detection of radio
emission
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Radio emission is unresolved in
FIRST images. Radio luminosities lie
well above the locus of star-forming
galaxies. 80% of the host galaxies are
clear mergers or lopsided/disturbed
systems.




HOST GALAXY PROPERTIES OF MID-IR BRIGHT AGN

RED — mid-IR AGN
BLACK- control sample of AGN selected
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MID-IR BRIGHT AGN WITH YOUNGEST STELLAR AGES
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MID-IR BRIGHT AGN WITH HIGHEST LUMINOSITIES
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Tea Cup AGN has resolved radio emission and a

arcsec

arcsec

740 km/s ionized gas outflow.
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The teacup AGN are similar to the high-z Type |l quasars studied by
Zakamska, which have ionized gas “halos” extending out to radii of 50
kpc with round morphologies and show comparable outflow velocities
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NEW CONCLUSIONS

1) | present a new AGN selection method that picks out objects with
significant host dust emission in their central regions. This is a rare class
of object: 1300 out of ~80000 AGN in the SDSS main sample

2) Unlike the parent sample, the host galaxies of these systems are
almost all mergers or disturbed galaxies. Their stellar populations
frequently show post-starburst signatures

3) The selection on mid-IR properties selects the AGN with the highest
[Olll] luminosities and ionization parameters. The most [Olll]-bright
objects in our sample have very similar properties to the Type |l quasars
studied by Zakamska and probably represent the subset of systems at a
late stage of the merging process.

4) Even in the local Universe, the mid-IR bright AGN dominate the
integrated [Olll]luminosity produced by AGN in the most massive
galaxies.

==> We are now able to pick out the long sought-after
merger/quasars from large surveys.
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