Growth of Structure and Star Formation in the Interstellar Medium: Observations Ph. André CEA Lab. AIM Paris-Saclay

Composite Planck 540/350 μm + IRAS 100 μm dust image of the Galactic ISMESA and the Planck/HFI ConsortiumStars, Planets and Galaxies – Berlin – 13 Apr 2018

Herschel image of the Aquila molecular cloud

Outline

 Introduction: Omnipresence and 'universality' of filamentary structures in the cold ISM

• Results supporting a filamentary paradigm of star formation

 Observational constraints on the formation and evolution of ISM filaments

Conclusions

D. Arzoumanian, V. Könyves, <u>Thanks to:</u> Y. Shimajiri, A. Roy, P. Palmeirim, A. Bracco, E.Ntormousi

Planck image of the Galactic ISM

4 deg

15 pc

Ph. André – Stars, Planets and Galaxies – Berlin – 13 Apr 2018

Herschel has revealed a "universal" filamentary structure in the cold ISM

Tracing filamentary networks

Different techniques: Projection on curvelets (Starck+2003), **DisPerSE (Sousbie2011)**, getfilaments (Men'shchikov+2013), FilFinder (Koch & Rosolowsky 2015), Hessian matrix (Schisano+2014, Planck XXXII 2016), Rolling Hough Transform RHT (Clark+2014), Template Matching TM (Juvela 2016)

Filaments dominate the mass budget of GMCs at high densities

• Below $A_V \sim 7$: ~ 10-20 % of the mass in the form of filaments

• Above $A_V \sim 7$: > 50-75 % of the mass in the form of filaments

Nearby filaments have a common inner width ~ 0.1 pc

Distribution of inner widths for 500+ nearby (d < 450pc) filaments

(cf. R. Smith+2014; Ntormousi+2016)

Ph. André - SPG2018 – Berlin – 13 Apr 2018

Is a characteristic filament width consistent with the observed power spectrum of cloud images?

Tension with scale-free power spectrum SPIRE 250 µm image of Polaris translucent cloud Panopoulou+2017 Noise-subtracted, deconvolved power spectrum of Polaris image 60 109 $P(k) = A_{ISM} k^{-2.63} + P_0$ $[y^2/sr]$ Power: P(k) [J MJy/sr 🞖 4 pc 05 104 Miville-Deschênes et al. 2010 0.01 0.10 1.00 Spatial angular frequency, k [arcmin⁻¹]

A simple experiment **Power spectrum of image** A. Roy et al. 2018 with synthetic 0.1 pc filaments 10⁹ **Injecting a population of synthetic** Power: P(k) [Jy²/sr] $P(k) = A_{ISM} k^{-2.75} + P_0$ 0.1 pc filaments with contrast ~ 50% 10⁸ in SPIRE 250 µm image of Polaris 0^{7} translucent cloud **Synthetic** 10⁶ filaments ۰0⁵ contribution 60 10⁴ 0.01 0.10 40 Spatial angular frequency, k [arcmin⁻¹] **Difference from power-law fit Residuals: Power-law – Fit** MJy/sr 👺 **Synthetic** 0.5 0.0 **Conclusion:** Observed power spectra remain consistent with a characteristic Original -0.5 filament width ~ 0.1 pc for realistic filling factors and filament contrasts 0.01 0.10

Ph. André - SPG2018 - Berlin - 13 Apr 2018

Spatial angular frequency, k [arcmin⁻¹]

1.00

1.00

Independent measurements of filament widths

Ph. André - SPG2018 – Berlin – 13 Apr 2018

André et al. 2010, Könyves et al. 2015

Ph. André - SPG2018 - Berlin - 13 Apr 2018

~ 75^{+15}_{-5} % of prestellar cores form in filaments, above a column density threshold N_{H₂} \gtrsim 7x10²¹ cm⁻²

Polychroni al. 2013, ApJL

Marsh al. 2016, MNRAS

Strong evidence of a column density "threshold" for the formation of prestellar cores

Interpretation: M/L threshold above which interstellar filaments are gravitationally unstable

 $\Delta : \frac{\text{Prestellar cores}}{\text{Aquila curvelet } N_{\text{H}_2}} \max_{10^{21}} (\text{cm}^{-2})$

André+2010; Könyves+2015

SPG2018 – Berlin

➢ The gravitational instability of filaments is controlled by the mass per unit length M_{line} = M/L:

• unstable (to fragmentation & radial collapse) if M_{line} ≥ M_{line, crit}

Inutsuka & Miyama 1992/97

 $\frac{M_{\text{line, crit}}}{\text{for T} \sim 10 \text{ K}} = 2 c_s^{-2}/\text{G} \sim 16 \text{ M}_{\odot}/\text{pc}$ $\text{for T} \sim 10 \text{ K} \Leftrightarrow \Sigma \text{ threshold}$ $\sim 160 \text{ M}_{\odot}/\text{pc}^2$ (for 0.1 pc filaments)

Unstable filaments in white

Fragmentation of filaments – Core spacing

ALMA 3mm mosaic of the Orion A ISF

Some evidence of hierarchical fragmentation within filaments (e.g. Takahashi+2013; Kainulainen+2013; Teixeira+2016)

Two fragmentation modes:

- « Cylindrical » mode $\leftarrow \rightarrow$ groups of cores separated by ~ 0.3 pc
- « Spherical » Jeans-like mode $\leftarrow \rightarrow$ core spacing < 0.1 pc within groups

Two-point correlation function

1.5

1.0

0.5

0.0

-0.5

1.0

0

20

A filamentary paradigm for ~ M_{\odot} star formation ?

Schneider & Elmegreen 1979; Larson 1985; Nagasawa 1987; Inutsuka & Miyama 1997; Myers 2009 ... Protostars & Planets VI chapter (André, Di Francesco, Ward-Thompson, Inutsuka, Pudritz, Pineda 2014)

1) Large-scale MHD compressive flows create ~0.1 pc filaments

Polaris – Herschel/SPIRE 250 μ m

2) Gravity fragments the densest filaments into prestellar cores

Taurus B211/3 – Herschel 250 μ m

Filament fragmentation can account for the peak of the prestellar CMF and the "base" of the IMF

Ph. André - SPG2018 - Berlin - 13 Apr 2018

Filaments/'ridges' & 'hub-filament' structures play a key role in massive SF

> Massive prestellar cores may not exist; high-mass protostars are 'clump-fed', gathering mass from pc-scale `hub-filament' structures

The DR21 ridge and its sub-filaments

Schneider+2010, Csengeri+2011, Henneman+2012 SDC335: ALMA identification of a massive protostellar core at the center of a converging network of filaments

Peretto+2013

> 50% of massive star formation and star clusters occur in ultra-dense (A_V >> 100, M/L > 100×M_{line,crit}) 'ridges' at the junctions of (supercritical) filaments (cf. Schneider+2012) Motte, Bontemps, Louvet 2017 ARA&A

Ph. André - SPG2018 – Berlin – 13 Apr 2018

Importance of filaments in the ISM of other galaxies?

Könyves et al. 2015

➢ Filaments may help to regulate the star formation efficiency in the dense molecular gas of galaxies (e.g. Shimajiri+2017)

Origin of ISM filaments - Role of gravity

"Hub-filament" systems with central cluster-forming "hub" + converging network of filaments

+ Kinematic signatures of large-scale collapse in some cases (e.g. SD335: Peretto+2013)

Ph. André - SPG2018 – Berlin – 13 Apr 2018

 $M \sim 1300 \ M_{\odot}$ in central 1 pc² Didelon+2015, Pokhrel+2016, Rayner+2017

Mon R2 hub:

But ... Filamentary structures are already widespread in non-self-gravitating interstellar clouds

Atomic (HI) clouds

The Riegel-Crutcher cloud in HI asborption (ATCA+ Parkes – Resolution: 100" ~ 0.1 pc)

McClure-Griffiths+2006 Clark+2014; Kalberla+2016

Translucent molecular clouds

The Polaris-flare cirrus cloud (*Herschel*/SPIRE 250 µm– Resol.: 18")

Miville-Deschênes+2010; Ward-Thompson+2010 Men'shchikov+2010

Ph. André - SPG2018 - Berlin - 13 Apr 2018

Role of magnetic fields?

> Planck polarization data reveal a very organized B field on large ISM scales, \sim perpendicular to dense star-forming filaments, \sim parallel to low-density filaments > Suggests that the B field plays a key role in the physics of ISM filaments Musca/Chamaeleon Taurus 22.7 22.7 -12 -8 10 pc Galactic latitude [deg] -14-10Galactic latitude [deg] -16-12 21.6 21.6 -18-14 -20 -16 -22 10 pc -18 20.5 20.5 166 164 176 174 172 170 168 306 304 302 300 298 296 294 Galactic longitude [deg] Galactic longitude [deg] Planck intermediate results. XXXV. (2016 J. Soler)

Suggests sub-Alfvénic turbulence on cloud scales

Color: N(H) from Planck data @ 5' resol. (~ 0.2-0.3 pc) **Drapery:** B field lines from Q,U *Planck* 850 µm @ 10'

Ph. André - SPG2018 – Berlin – 13 Apr 2018

F. Boulanger's group

Role of large-scale flows and expanding shells

> Many examples of clouds with cometary shapes or « head-tail » structures pointing toward OB stars/associations

Suggestive of the action of stellar winds and large-scale streams/shells, not produced by gravity, sweeping up and compressing ISM material

Planck 850 μm image around the Ophiuchus/Pipe clouds

e.g. de Geus 1992; Loren & Wootten 1986; Tachihara+2002; Preibisch & Zinnecker 1999

Hα color + *Planck* 350 μm (grey) image of the Taurus/Perseus/Auriga cloud complex

e.g. Lim+2013; Bouy & Alves 2015; Shimajiri+2018

Ph. André - SPG2018 - Berlin - 13 Apr 2018

Detection of transverse velocity gradients across filaments: Evidence of filament formation within sheet-like structures?

Fernandez-Lopez+2014, Mundy et al., in prep. see also H. Kirk+2013 for Serp-S

Ph. André - SPG2018 - Berlin

Beuther, Ragan+2015

Velocity-coherent "fibers" in dense molecular filaments: Accretion-generated substructure?

C¹⁸O velocity components overlaid on *Herschel* 250 μm dust continuum image Filtered 250 µm image showing the fine structure of the Taurus B211/3 filament

> Bundle of 35 velocity-coherent « fibers » detected in $C^{18}O(2-1)$ and $N_2H^+(1-0)$ and making up the main filament

Ph. André - SPG2018 - Berlin - 13 Apr 2018

Summary: A filamentary paradigm for star formation?

- *Herschel* results suggest M_o star formation occurs in 2 main steps:
 1) ~0.1pc filaments from large-scale compressive flows in the ISM;
 2) Prestellar cores from gravitational instability of dense filaments above the critical line mass M/L ~ 16 M_o pc⁻¹
- ➤ Filament fragmentation appears to produce the peak of the prestellar CMF and likely accounts for the « base » of the IMF, according to a « core-fed » picture (1 core → ~ 1 star/system)
- Massive protostars (high-mass end of IMF) may be « clump-fed » instead, gathering mass from cluster-forming 'hub-filaments'
- Evidence that dense filaments result from large-scale compressive flows and accumulation of matter ~ along B in shell-like structures
- Dense filaments appear to accrete from their parent cloud/shell and may grow in mass and complexity (fibers) with time