Stars, Planets and Galaxies 2018 Harnack House, Berlin

The imprint of the initial conditions on large-scale structure

Simon White Max Planck Institute for Astrophysics

The Planck map of T_{CMB} – the initial conditions for all structure growth

The Planck map of T_{CMB} – the initial conditions for all structure growth A pure gaussian random field – fully specified by its power spectrum

The Planck map of T_{CMB} – the initial conditions for all structure growth A pure gaussian random field – fully specified by its power spectrum

The observed spectrum is well fit by a 6-parameter flat Λ CDM model for the contents of the hi-z universe and the origin of all structure.

The six parameters of the minimal ΛCDM model

anck Collaboration 2013 Planck+WP		Planck+WP
Parameter	Best fit	68% limits
$\Omega_{\rm b} h^2$	0.022032	0.02205 ± 0.00028
$\Omega_{ m c}h^2$	0.12038	0.1199 ± 0.0027
100 <i>θ</i> _{MC}	1.04119	1.04131 ± 0.00063
τ	0.0925	$0.089^{+0.012}_{-0.014}$
$n_{\rm s}$	0.9619	0.9603 ± 0.0073
$\ln(10^{10}A_{\rm s})$	3.0980	$3.089^{+0.024}_{-0.027}$

The six parameters of the minimal ΛCDM model

Planck Collaboration 2013

Planck+WP

Parameter	A 1.5% r	neasurement of	the cosmic baryon density
$\Omega_{ m b}h^2$		0.022032	0.02205 ± 0.00028
$\Omega_{\rm c}h^2$		0.12038	0.1199 ± 0.0027
$100\theta_{\rm MC}$ A 40 σ determined	ction of nor	baryonic DM	using <u>only</u> z ~1000 data!
au		0.0925	$0.089^{+0.012}_{-0.014}$
$n_{\rm s}$		0.9619	0.9603 ± 0.0073
$\ln(10^{10}A_{\rm s})$		3.0980	$3.089^{+0.024}_{-0.027}$

The six parameters of the minimal ΛCDM model

Planck Collaboration 2013

Planck+WP

Paramet	er A 1.5% m	neasurement of t	he cosmic bary	on density			
$\Omega_{ m b}h^2$		0.022032	0.02205 ±	0.00028			
$\Omega_{\rm c}h^2$		0.12038	0.1199 ±	0.0027			
$100\theta_{MC}$ A 40 σ detection of nonbaryonic DM using <u>only</u> z ~1000 data!							
au	86σ in 2015	using Planck o	data alone!!	0.012 0.014			
$n_{\rm s}$		0.9619	$0.9603 \pm$	0.0073			
$\ln(10^{10}A_{\rm s})$.		3.0980	3.089_	0.024 0.027			

Information content of the Planck CMB map

Late-time mass fluctuations from CMB lensing

The lensing signal in the CMB pattern is imprinted at 0.5 < z < 2.5
 gravitational structure growth since z ~ 1000 is as expected

Ly α forest spectra and small-scale initial structure

Viel, Becker, Bolton & Haehnelt 2013

Transmitted quasar flux in hydrodynamic simulations of the intergalactic medium in Λ CDM and WDM models.

High-frequency power is missing in the WDM case

Lyman a forest spectra for WDM relative to CDM

Mean mass profiles around low-redshift galaxies

Points are mean weak lensing profiles around SDSS "central" galaxies as a function of their stellar mass.

Lines are from a simulation of the formation of the galaxy population within Λ CDM, assuming Planck parameters.

No simulation parameters were adjusted for this comparison, but the agreement depends on the <u>astrophysical</u> modelling, i.e. which galaxies are put in which halos

Large-scale structure from linear theory + adhesion

In linear theory: $\delta(\mathbf{q}, t) = b(t) \delta_0(\mathbf{q}) \longrightarrow \mathbf{x}(\mathbf{q}, t) = \mathbf{q} - b(t) \nabla \Phi_0$

This is known as the "Zel'dovich approximation"

"Adhesion" assumes matter to stick at shocks, conserving M and P Together they reproduce the cosmic web simply as "amplified IC's"

Melott, Shandarin & Weinberg 1994

Lavaux & Jasche 2016

Orthogonal slices through the observed SDSS galaxy distribution

Lavaux & Jasche 2016

Orthogonal slices through the observed SDSS galaxy distribution

Mean of 10000 linear density distributions at z=1000 which evolve to produce z=0 DM distributions consistent with SDSS + Poisson sampling

Lavaux & Jasche 2016

Orthogonal slices through the observed SDSS galaxy distribution

Mean of 10000 linear density distributions at z=1000 which evolve to produce z=0 DM distributions consistent with SDSS + Poisson sampling

Mean of the z=0 set of 1000 DM distributions produced by gravitational evolution from these initial conditions

Lavaux & Jasche 2016

Orthogonal slices through the observed SDSS galaxy distribution

Mean of 10000 linear density distributions at z=1000 which evolve to produce z=0 DM distributions consistent with SDSS + Poisson sampling

Mean of the z=0 set of 1000 DM distributions produced by gravitational evolution from these initial conditions

Positions and masses of observed rich clusters are quite well matched

The IC's also determine the z=0 distribution of halos

Consider the linear density field smoothed with a filter enclosing M

 $\delta_{s}(\mathbf{x}, t; \mathbf{M}) = \int d^{3}\mathbf{x}' \,\delta(\mathbf{x}', t) \,F(|\mathbf{x} - \mathbf{x}'|; \mathbf{M})$

<u>Press-Schechter Ansatz</u>: At time t the mass element from initial position **x** is part of a halo of mass given by the largest M for which $\delta_s(\mathbf{x}, t; M) > \delta_{thresh}$ for some threshold δ_{thresh}

- For suitably chosen F and $\boldsymbol{\delta}_{thresh}$ this reproduces simulated
 - Halo mass functions, n(M, t)
 - Halo clustering on large scale, $\xi(r; M, t)$
 - Halo assembly histories, $P\{M_1, t_1 | M_0, t_0\}, t_1 < t_0$

The properties of z=0 halos are directly encoded in the z=1000 IC's

The (simulated) dark halo mass function

Simulations are well converged over 8 orders of magnitude in mass

A function of PS type can fit (also as a function of t) to $\sim 10\%$

The large-scale clustering of (simulated) halos as a function of M and t is also well fit by PS predictions.....

Gao et al 2005

Halos of mass $\sim 2 \ge 10^{11} \text{ M}_{\odot}$ in a 30 Mpc/h thick slice

A random 20% of all halos shown

.....but dependences on halo formation time (concentration, spin, shape...) are not. This is known as **AssemblyBias**

Gao et al 2005

Halos of mass $\sim 2 \ge 10^{11} \text{ M}_{\odot}$ in a 30 Mpc/h thick slice

The earliest forming 20% of halos

.....but dependences on halo formation time (concentration, spin, shape...) are not. This is known as **AssemblyBias**

Gao et al 2005

Halos of mass $\sim 2 \ge 10^{11} \text{ M}_{\odot}$ in a 30 Mpc/h thick slice

The latest forming 20% of halos

.....but dependences on halo formation time (concentration, spin, shape...) are not. This is known as **AssemblyBias**

Defining the cosmic web at high resolution

Busch & White 2018

Use the 10¹⁰ particles in the Millennium Simulation to build a Voronoi tesselation

Define m/V as the density of each cell

Define objects as connected sets of cells with density exceeding ρ_{thresh}

As $\rho_{thresh}/\left<\rho\right>$ drops from 10 to 5 the largest object percolates

For $\rho_{\text{thresh}} / \langle \rho \rangle = 5$ it contains 35% of all mass but fills only 0.6% of the volume

Bias as a function of mass and saddle point density

Summary?

- Large-scale structure, the cosmic web and the spatial and mass distributions of halos can all be viewed as relatively simple distortions of the linear initial conditions
- This is because evolution is due almost entirely to gravity, and t_{dyn} / t_{Hubb} is not much less than unity
- The precisely known, gaussian nature of the IC's then translates into accurately calculable properties for halos and the cosmic web
- Galaxy formation processes occur smaller scales with shorter timescales and more physics – then nothing is accurately calculable

Chess — Mud wrestling (Martin Rees)