STARS, PLANETS AND GALAXIES 2018

Stellar Nucleosynthesis and Yields

George Angelou April 16, 2018 Stellar Evolution Group, Max-Planck-Institut für Astrophysik Garching, Germany

(A 3D printed chart of the nuclides at Monash University)

NUCLEOSYNTHESIS

Multidisciplinary field that ties together many of the talks here!

- · Stellar Evolution (all masses)
- Mixing and Stellar Processes
- Spectroscopy
- · Nuclear and Quantum Physics (theoretical and experimental)
- · Cosmochemistry
- · Terrestrial and Meteoritic Chemistry
- Cosmology
- · Galactic Chemical Evolution
- Neutrino Astrophysics
- · IMF
- · ISM
- Hydrodynamics

THE SCIENTIFIC QUESTION

- By what means and in which quantities are the naturally occurring isotopes produced?
- What are their astrophysical sites?

REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

OCTOBER, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

> "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

> > but perhaps

"The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2)

NUCLEOSYNTHETIC PROCESSES

- Hydrogen burning (pp, CNO, NeNa, MgAl)
- Helium burning (3α)
- Advanced burning (α -captures, C, Ne, O, Si, QSE)
- NSE (iron peak Sc Se)
- s-process
- i-process
- r-process
- · p-process (relatively n-poor stable nuclei)
- rp-process
- irp-process
- αp-process
- $\cdot \gamma$ -process (disintegration of s/r nuclei)
- ν-process
- νp-process
- BBN (H, He, Li)
- Spallation (Li, Be, B, + random isotopes)

Hydrostatic burning (A \leq 60)

} Explosive burning ($48 \le A \le 84$)

Neutron captures (A > 56)

A \ge 74 (between ⁷⁴Se and ¹⁹⁶Hg)

SN neutrino winds (A > 56)

Non-Stellar Nucleosynthesis

SIGNATURES OF NUCLEOSYNTHETIC PROCESS - SOLAR SYSTEM ABUNDS

OTHER SIGNATURES OF NUCLEOSYNTHETIC PROCESS

рlate 3. В²FH (1957) Characterized by their neutron-capture time scales compared to average β -decay half lives.

Dy: Dysprosium Tb: Terbium Gd: Gadolinium • The r-process $\tau_{\beta} >> \tau_n$; N_n > 10²⁰ n/cm³. Unstable nucleus captures another neutron before decaying. Operates far from stability and decays back.

- The s-process $\tau_{\beta} << \tau_{\rm n}$; N_n > 10⁷ n/cm³. Unstable nucleus decays before capturing another neutron. Operates close to the valley of β -stability
- · If $\tau_{\beta} \approx \tau_n$ several paths possible (branching point)

Iliadis (2007)

MULTIPLE SITES/COMPONENTS?

Sneden et al. (2008)

MASSIVE STAR STRUCTURE

José and Iliadis (2011)

During NSE abundances determined by repeated application of Saha equation $\longrightarrow N_i(T,\rho,\eta)$

After NSE the nucleosynthesis depends on three wind parameters that set Y_n/Y_{seed}. In general high entropy, short expansion timescales, and low electron fractions will lead to r-process.

State of the art models suggest: $\tau \approx 0.01$ s, S/k ≈ 100 in the wind.

Need S/k \geq 400 given typical expansion and Ye from the models.

Hoffman et al. (1997)

George Angelou 11/27

 $X_{i,Yield}$ (Mass Loss, SN explosion) = $X_{i,ejected} - X_{i,initial}$

Mass Range ${\rm M}_{\odot}$	Main Products	Comments
$\lesssim 0.8$		They lock up gas
[0.8 ,8.0]	⁴ He, ¹² C, ¹⁴ N, Fluorine, CNO isotopes and s-process	Differences across masses due to dredge-up events, HBB, etc. S-process from $^{13}\mathrm{C}(\alpha,n)^{16}\mathrm{O}$ source
≳ 10	(N, C, O, Ne, Mg) (Al, Si, S, Ar, Ca) Fe peak, s-process r- and νp- process p process	Hydrostatic burning phases Hydrostatic and (SN) explosive Essentially explosive burning (NSE, QSE) 22 Ne $(\alpha, n)^{25}$ Mg source during core-He and shell-C burning phases. Neutrino winds?
\gtrsim 100	Oxygen	And lots of it

System	Main Products	Comments
Nova	²⁶ Al, ²² Na, ¹⁵ N, ¹⁷ O, ¹³ C, ⁷ Li	WD + low-mass companion (typically K-M dwarf), Recurrent.
Type 1a	Fe-peak nuclei, ⁵⁶ Ni (⁵⁶ Fe), possible p-process?	CO WD + companion (SD/DD). Several ignition regimes possible
Type 1 XRB	lphap and rp nuclei	NS + low-mass companion. Most frequent type of thermonuclear explosions. Escape?
Hard GRB (Kilonova)	r-process	NS+NS. GW 170817
Soft GRB	⁵⁶ Ni, ⁴⁹ Ti, ⁴⁵ Sc, ⁶⁴ Zn, ⁹² Mo	Rich nucleosynthesis possible from BH/accretion disc channel. Depends on model details especially mass-accretion rate.

MASSIVE STAR YIELD UNCERTAINTIES

	Mass Cut (25 M _o Model) ^a			Mass Cut (20 M_{\odot} Model) ^b			
Element	1.42	1.54	1.62	1.42	1.55	1.62	Main Element
Fe	2.44E-01	1.62E-01	1.14E - 01	1.72E-01	9.53E-02	5.50E-02	⁵⁶ Ni
Cr	1.30E-03	1.27E-03	1.24E - 03	1.31E-03	1.20E-03	1.14E-03	⁵² Fe
Mn	3.38E-04	3.37E-04	3.37E-04	3.35E-04	3.34E-04	3.33E-04	55Co
Со	6.87E-04	4.84E-04	3.01E - 04	5.33E-04	2.33E-04	7.00E-05	59Cu
Ni	8.71E - 02	5.48E-02	3.64E - 02	6.42E-02	2.70E - 02	7.16E - 03	⁵⁸ Ni

TABLE 1 Dependence on Mass Cut: Yield (M_{-})

^a $M_{\text{core}} = 8 M_{\odot}, E_{\text{exp}} = 1.0 \times 10^{51} \text{ ergs}, Y_{e}^{\text{deep}} = 0.4950.$ ^b $M_{\text{core}} = 6 M_{\odot}, E_{exp} = 1.0 \times 10^{51} \text{ ergs}, Y_{e}^{\text{deep}} = 0.4940.$

S = k log Γ : Universe: S/k \approx 10¹⁰, MS/room: S/k \approx 10, SNCC: S/k \approx 1

- Mass cut usually taken at S/k=4. Coincides well to first principle models usually around base of the oxygen shell.
- Rotation
- Binarity
- Mass Loss
- · Overshoot, semi convection, instabilities, convective boundaries.

Nakamura et al (1999)

- Z=0.0, 0.0001, 0.0004, 0.004, 0.008, 0.02, 0.05
- WOW Wooley and Weaver (1995)
- PCB Portinari, Chiosi Bressan (1998)
- · CLI Chieffi and Limongi (2003, 2004)
- · LIM Limongi and Chieffi (2006, 2012)
- **KOB** Kobayashi et al. (2006) + Rauscher et al (2002)
- HEG Heger and Woosely (2010) + Frölich et al (2006)
- · See also Pignatari et al. (2015)

Predictions for α yields at different Z, where $\alpha = {}^{20}$ Ne $+ {}^{24}$ Mg $+ {}^{28}$ Si $+ {}^{32}$ S $+ {}^{40}$ Ca

Molla et al. (2015)

		Lable 1. Yield definit	lons
Nuclide i	Yields $Y_i(M)$	Net yields $y_i(M)$	Production factors $f_i(M)$
Created	$> M_{0,i}$	> 0	> 1
Re-ejected	$= M_{0,i}$	= 0	= 1
Destroyed	$< M_{0,i}$	< 0	< 1

 $M_{0,i}$ is defined in Eq. 2.16.

Chieffi and Limongi (2013)

Reference	$\begin{array}{c} \text{Mass range} \\ (\text{in } \text{M}_{\odot}) \end{array}$	Metallicity range (in mass fraction, Z)	s-process?	Downloadable tables?
Fenner et al. (2004)	2.5-6.5	[Fe/H] = -1.4	No	No
Herwig (2004b)	2.0-6.0	1×10^{-4}	No	Yes
Karakas & Lattanzio (2007)	1.0-6.0	$1 \times 10^{-4}, 4, 8 \times 10^{-3}, 0.02$	No	Yes
Campbell & Lattanzio (2008)	1.0-3.0	Z = 0, [Fe/H] = -6.5 , -5.45 , -4 , -3	No	Yes
Iwamoto (2009)	1.0-8.0	$Z = 2 \times 10^{-5}$	No	No
Karakas (2010)	1.0-6.0	$1 \times 10^{-4}, 4, 8 \times 10^{-3}, 0.02$	No	Yes
Siess (2010)a	7.5-10.5	1×10^{-4} to 0.02	No	Yes
Cristallo et al. (2011) ^b	1.3-3.0	1×10^{-4} to 0.02	Yes	Yes
Ventura et al. (2013)	1.5 - 8.0	$3 \times 10^{-4}, 10^{-3}, 0.008$	No	No
Gil-Pons et al. (2013) ^c	4.0-9.0	1×10^{-5}	No	Yes
Pignatari et al. (2013)	1.5, 3.0, 5.0	0.01, 0.02	Yes	Yes
Karakas, Marino, & Nataf (2014)	1.7, 2.36	$3, 6 \times 10^{-4}$	Yes	Yes
Ventura et al. (2014)	1.0-8.0	4×10^{-3}	No	No
Doherty et al. (2014a)	6.5-9.0	0.004, 0.008, 0.02	No	Yes
Doherty et al. (2014b)	6.5-7.5	$0.001, 1 \times 10^{-4}$	No	Yes
Straniero et al. (2014)	4.0-6.0	$0.0003, [\alpha/Fe] = +0.5$	Yes	Yes

^{*a*} Yields for six metallicities are provided with the range noted in the table. ^{*b*} Yields for nine metallicities are provided with the range noted in the table.

^cDownloadable tables are surface abundance predictions, yields are given in their Table 4.

Potential differences and uncertainties in the models

- Mass loss prescription
- Nuclear network strategy
- Treatment of convective boundaries
- Paramterization of C13 pocket and source activation
- · Number of thermal pulses and dredge-up efficiency (λ)
- $\cdot\,$ Strength and depth of HBB
- Extra mixing
- PIE/DSF at low Z

Karakas and Lugaro (2016)

The Monash Chemical Yields Project

MonXey

Doherty, Lattanzio, Angelou, Campbell, Church, Constantino, Cristallo, Gil-Pons, Hampel, Henkel, Lugaro, Karakas, Stancliffe

 $\sum_{i=1}^{Mon} \chi_{ey}$

A large and homogeneous set of (single star) nucleosynthetic yields for low and intermediate mass stars for all elements H-Pb

Grid will consist of over 800 detailed evolutionary and nucleosynthetic models from ~ 0.8 Msun to core collapse supernova boundary (CC-SN) Also will include various test subgrids (ie mass loss rates)

> Contact : Carolyn.Doherty @ csfk.mta.hu (Konkoly Observatory - Hungary)

GW170817 + GRB 170817A

- \cdot GRB (2s)
- Gravitational waves
- Transient optical/near-infrared source from r-process.

Opacities from bound-bound transitions of open f-shell, Lanthanide elements (Nd and Er) responsible for observed emission.

PS: Models suggest <Ye> \approx 0.1, <S/k> \approx 20 (Bovard et al. 2017)

---- M_{r-p} = 0.01 M_☉

 $-M_{r-p} = 0.05 M_{\odot}$

AN R-PROCESS SITE

ANOTHER SITE?

Magenta stars represent observations. Red- CE model star abundances assuming coalescence timescale of 10^8 years, Green assumes 10^6 years, Blue show increase in probability of NS mergers. Within this treatment of galactic chemical evolution, none of these options would permit a fit with observations of low metallicity stars in the metallicity range $-4 \leq [Fe/H] \leq -2.5$

Thielemann et al. (2017)

George Angelou 25/27

- Can estimate 3α reaction. But its never been measured in a laboratory: uncertain $\pm 15\%$. Theoretical determinations do not reproduce to fundamental observations.
- ¹²C(α, γ)¹⁶O we are forced to extrapolate into relevant regime but this is complicated by the existence of two subthreshold levels.
 Important as this will determine the nature of the remnant neutron star.
- The various measurements of $^{16}O + ^{16}O$ are in poor agreement at the lower energies. Incomplete knowledge of the branching ratios for the different exit channels. Primary O reactions least a factor of \approx 3 uncertain. Secondary reactions probably uncertain to within 25%
- Nuclear properties far from stability.

deBoer et al. (2017)

(SOME) OPEN QUESTIONS

- · Spite Plateau/ BBN (see J.M talk)
- · Role of Mergers/Type 1 XRB?
- Do we now predict an over-production of r-process nuclei? How many sites do we need?
- \cdot Do NS-NS mergers occur early enough to explain the UMP stars?
- Do we need other processes (LEPP) to explain all s-process nuclei? *v*p-process sufficient to explain Sr, Y and Z?
- We have an s/r process. Is there an i-process and what role does it play?
- · Are all nuclear physics measurement techniques equal?
- · Impact of metallicity on SN1a?
- · IMF? (See P.K talk)

APPENDIX

R-PROCESS

MAGNETO-ROTATIONALLY-DRIVEN SN (JET-SN)

A fraction of high mass stars end their life as a "magneto-rotationally driven supernova" (magnetar) forming in the center a highly magnetized neutron star (with fields of the order 10¹⁵G) and ejecting r-process matter along the poles of the rotation axis.

Green: CE model star abundances assuming Jet-SN formation of 0.1%, blue assuming 1% (Wehmeyer et al. 2015) George Angelou 3/26

HYDROSTATIC BURNING PHASES AND REMNANTS

Low & Intermediate Mass Stars

Evolutionary Phase CO WD co Asymptotic Giant Branch (AGB) Phase WD Gentle Central Ignition Degenerate Helium Off-centre **Core He Burning** WD ignition Brown Planets Dwarf Core H Burning Core H Burning (burn D) M/M e 0.013 0,08 0.5 0.8 2.2 lower intermediate Mass range name lowest low mass stars intermediate m mass stars

Karakas and Lattanzio (2014)

HYDROSTATIC BURNING PROCESSES & REMNANTS

Karakas and Lattanzio (2014)

Central Burning Phase	Main Products	Temperature (K)	Density (g/cc)	Duration
hydorgen burning	Не	7×10 ⁷	10	10 ⁷ years
helium burning	С, О	2×10 ⁸	2000	10 ⁶ years
carbon burning	Ne, Na, Mg, Al	8×10 ⁸	10 ⁶	1000 years
neon burning	O, Mg	1.6×10 ⁹	10 ⁷	3 years
oxygen burning	Si, S, Ar, Ca	1.8×10 ⁹	10 ⁷	0.3 years
silicon burning	Fe	2.5×10 ⁹	10 ⁸	5 days

"The late stages (> helium burning) of evolution in massive stars are characterized by huge luminosities, carried away predominantly by neutrinos, and consequently by short time scales. The nuclear physics can become quite complicated."

- Woosley, Heger, and Weaver (2002) Rev. Mod. Phys., 74, 1016.

NUCLEOSYNTHETIC PROCESSES

With thanks to Christian Iliadis and his book Nuclear Physics of Stars (Wiley 2007)

PP CHAINS

 $T_{1/2}$: ¹³N (9.965 min); ¹⁵O (122.24 s); ¹⁷F (64.49 s); ¹⁸F (109.77 min)

CNO1	CNO2	CNO3	CNO4
${}^{12}C(p,\gamma){}^{13}N$ ${}^{13}N(\beta^+\nu){}^{13}C$	¹⁴ N(p,γ) ¹⁵ O ¹⁵ O(β ⁺ ν) ¹⁵ N	¹⁵ N(p,γ) ¹⁶ O ¹⁶ O(p,γ) ¹⁷ F	¹⁶ O(p,γ) ¹⁷ F ¹⁷ F(β ⁺ ν) ¹⁷ O
¹³ C(p,γ) ¹⁴ N	¹⁵ N(p,γ) ¹⁶ O	¹⁷ F(β ⁺ ν) ¹⁷ O	¹⁷ O(p,γ) ¹⁸ F
¹⁴ N(p,γ) ¹⁵ O	¹⁶ O(p,γ) ¹⁷ F	¹⁷ O(p,γ) ¹⁸ F	¹⁸ F(β ⁺ ν) ¹⁸ O
¹⁵ O(β ⁺ ν) ¹⁵ N	¹⁷ F(β ⁺ ν) ¹⁷ O	¹⁸ F(β ⁺ ν) ¹⁸ O	¹⁸ O(p,γ) ¹⁹ F
¹⁵ N(p,α) ¹² C	¹⁷ O(p,α) ¹⁴ N	¹⁸ O(p,α) ¹⁵ N	¹⁹ F(p,α) ¹⁶ O

19F

18F

17F

14C

¹⁹F

¹⁸O

CNO2

CNO1

12C 13C

HELIUM BURNING

It was pointed out (Hoyle 1954) that the overall conversion of three α -particles to one ¹²C nucleus during helium burning would be too slow unless the second step proceeds via an s-wave resonance (J π = 0 +) corresponding to a compound level near the α -particle threshold in ¹²C (S α = 7367 keV).

EXPLOSIVE H-BURNING

Hot CNO T=100-400 MK. β + start competing with proton capture. H exhausted after a few thousand seconds.

HCNO Break Out T > 500MK. α -particle captures on O isotopes remove HCNO catalysts.

EXPLOSIVE H-BURN A > 20

T > 250 MK. This energy is generated by building up heavier nuclei from lighter seed nuclei via proton-captures and β + -decays (typical Nova conditions). Once we reach GK (Type 1 XRB) can build up to Ni through rp and α p-processes

George Angelou 14/26

Hydrostatic Burning T = 0.61.0 GK Explosive Burning T = 1.8 - 2.5 GK

• Primary reactions: ${}^{12}C({}^{12}C,p){}^{23}Na$ (Q=2.2 MeV) ${}^{12}C({}^{12}C,\alpha){}^{20}Ne$ (Q=4.6 MeV) ${}^{12}C({}^{12}C,n){}^{23}Mg$ (Q=-2.6 MeV

+ several secondary reactions

Time integrated abundance flows for conditions typical of core-carbon burning in a 25 M_{\odot} star.

NEON BURNING

- Hydrostatic Burning T = 1.2 1.8 GK
- Explosive Burning T = 2.5 3.0 GK
- Might expect ¹⁶O + ¹⁶O is the next process to proceed
- Now at temperatures where photodisintegrations play a significant role.
- Primary reaction: $^{20}Ne(\gamma,\alpha)^{16}O$ (Q=-4730 keV)
- Secondary reactions ${}^{20}\text{Ne}(\alpha,\gamma){}^{24}\text{Mg}(\alpha,\gamma){}^{28}\text{Si}$ + more

OXYGEN BURNING

- $\cdot~$ Hydrostatic Burning T= 1.5 2.7 GK
- Explosive Burning T= 3.6 GK
- Primary reactions ${}^{16}O({}^{16}O, p){}^{31}P$ ${}^{16}O({}^{16}O, 2p){}^{30}Si$ ${}^{16}O({}^{16}O, \alpha){}^{28}Si$ ${}^{16}O({}^{16}O, 2\alpha){}^{24}Mg$ ${}^{16}O({}^{16}O, d){}^{30}P$ ${}^{16}O({}^{16}O, n){}^{31}S$
- · Plus many secondary
- The reaction rate contributions for the emission of protons ≈ 62%, α-particles ≈21%, and neutrons ≈ 17%.

- Photodisintegration rearrangement & QSE
- A = 24–46 form one large quasi-equilibrium cluster. A second cluster at Fe peak.

- Hydrostatic burning T = 2.8 4.1 GK
- \cdot Explosive burning T= 4 5 GK
- Coloumb barrier for ²⁸S+²⁸Si too high
- Many lighter particles liberated through photodisintegration and they combine to form heavier (Fe-peak) nuclei
- Photodisintegration rearrangement on larger scale.

$\nu\text{-}$ and $\nu\text{p-process}$

1
$(Z, A) + v \rightarrow (Z, A)^* + v' \rightarrow (Z, A - 1) + n + v',$
$\rightarrow (Z-1, A-1) + p + v'$
\rightarrow $(Z-2, A-4) + \alpha + \nu'$

 νp -process

 ν -process

$$\begin{split} \nu_{e} + n &\rightarrow p + e^{-} \\ \bar{\nu_{e}} + p &\rightarrow n + e^{+} \\ \nu_{e} + {}^{4} &\text{He} \rightarrow {}^{3} &\text{He} + p + e^{-} \\ \bar{\nu_{e}} + {}^{4} &\text{He} \rightarrow {}^{3} &\text{H} + n + e^{+} \end{split}$$

sequence of (p,γ) and (n,p) or β^+ reactions producing neutron-deficient nuclei with A > 64.

TABLE 25

SUMMARY TABLE: SPECIES DUE TO NEUTRINO NUCLEOSYNTHESIS^a

Species	н	He	С	Ne	0	NSE
⁷ Li	В	A	С			Α
¹⁰ B		С	в			
¹¹ B		В	Α			Α
¹⁵ N			С	С	С	
¹⁹ F				Α		
²² Na				Е		
²⁶ Al				E		
²⁷ Al					С	
³¹ P					E	
³⁵ Cl				Е	E	
³⁹ K					Е	
⁴⁰ K				E	в	
⁴¹ K					Е	
⁴³ Ca				С	С	
45Sc					С	В
⁴⁷ Ti				С	С	С
⁴⁹ Ti						в
⁵⁰ V				E	в	в
⁵¹ V				С	Е	E
⁵⁵ Mn						E
⁵⁹ Co			·			E
⁶³ Cu						в
¹³⁸ La				Α		
¹⁸⁰ Ta				Α		

* A = species produced in full abundance; B = important production; C = minor production; E = enhanced significant production.

TYPE 1A SUPERNOVA

W7 - Nomoto et al. (1984) 1D deflagration. Compared here to 2D models with (a) deflagration, (b) Centre-delayed and (c) Off-Centre delayed detonation.

Figure 14. Ratios of integrated element yields to the W7 model yields.

- **Prompt Detonation** Pure detonation propagating from the centre (cannot reproduce distribution of intermediate-mass elements from spectra)
- **Deflagration** Subsonic flame allows layers to expand (cannot reproduce Fe peak, energies for majority + other issues)
- **Delayed Detonation** Deflag front propagates and pre-expands layers before switching to detonation (matches spectroscopic elemental abundances and velocities)

See also Travalio et al (2011) for p-process, Seitenzahl et al. (2013) for 3D yields Maeda et al. (2010)

George Angelou 20/26

XRB AND TZOS

Type 1XRB

- $\cdot \ \ 3\alpha$ process creates $^{\rm 12}{\rm C}$
- Accreted material from LM companion allows for rp process (Series of (p, γ) reactions and β^+ decays .
- · Also sequence of (α, p) and (p,γ) reactions.
- Reach nuclei far from stability, close to proton drip line.
- Waiting points, i.e. (α, p) reactions cannot progress and must wait for β^+ decay), can affect the nucleosynthetic path and energy output.

Massive Thorn-Zytkow Objects

- Neutron star core surrounded by a large and diffuse envelope (M > 12)
- Convective envelope with turn over of 0.01s
- Material may repeatedly random walk to the base of the convective envelope, spells or rp-conditions separated by intervals long enough for beta decay back towards stability hence interupted rp-process
- Back of envelope suggest that If they exist they could account for all the p-nuclei however do not give solar system abundance pattern

SIC GRAIN TAXONOMY

Designation	Mainstream	X	Y	Z	A+B ^a	Nova
Crystal type	3C, 2H ^b	3C, 2H ^b	3C, 2H ^b	3C, 2H ^b	3C, 2H ^b	3C, 2H?
						b
Heavy trace	~ 10 -20× ^c	highly	\sim 10× $^{ m c}$	NA	solar or	NA
elements °		depleted			10-20× °	
$^{12}C/^{13}C$	10 - 100	20 - 7000	140 - 260	8 - 180	< 3.5 (A)	< 10
14	4				3.5 - 10(B)	
¹⁴ N/ ¹⁵ N	$50 - 2 \times 10^{4}$	10 - 180	400 -	1100 -	$40 - 1.2 \times 10^{4}$	< 20
29286		28	5000	1.9×10*		
² Si/ ² Si ^c	0.95-1.20×	²⁰ Si-rich	0.95-	≈solar	1.20×	≈solar
20 28 -		29	1.15×	20		20
³⁰ Si/ ²⁸ Si	$0.95 - 1.14 \times$	²⁸ Si-rich	³⁰ Si-rich	³⁰ Si-rich	1.13×	³⁰ Si-rich
²⁰ Al/ ²⁷ Al	10 ⁻³ to 10 ⁻⁴	0.02 to 0.6	similar to	similar to	<0.06	up to 0.4
			MS	MS		17
Other	excess in	⁴⁴ Ca	excess in	excess in	excess in	4/Ti-rich
isotopic	⁴⁰ Ti, ⁴⁹ Ti,	excess	⁴ °Ti, ⁴⁹ Ti,	⁴⁰ Ti, ⁴⁷ Ti,	⁴⁰ Ti, ⁴⁹ Ti,	
markers ^c	⁵⁰ Ti	⁴¹ K excess	⁵⁰ Ti	⁴⁹ Ti	⁵⁰ Ti	
22	over ⁴⁸ Ti		over ⁴⁸ Ti	over ⁴⁸ Ti	over ⁴⁸ Ti	
²² Ne ^a	yes	NA	NA	NA	NA	NA
Abundance	87-94%	1%	1 - 2%	0 - 3%	2-5%	<< 1%

Table 5. Some characteristics of presolar silicon carbide populations

Sources: Amari et al. 2001a,b, Hoppe and Ott 1997, Hoppe and Zinner 2000, Nittler and Hoppe 2004a,b,Ott 2003, Zinner 1998

^a Group A and B grains were initially separated but later found to form a continuum in composition.

^b cubic 3C, hexagonal 2H; Daulton et al. (2002, 2003).

^c Abundance compared to solar composition.

 d^{22} Ne = Ne-E(H) = Ne(G); and NA: not analyzed.

George Angelou 22/26

- $\cdot\,$ Main s-process (90 < A < 208) in LIM during TP-AGB with the main neutron source being $^{13}{\rm C}(\alpha,n)^{16}{\rm O}$ reaction
- Weak s-components (A leq 90) in massive stars during core Heand shell C-burning phases with the main source 22 Ne(α ,n) 25 Mg reaction.
- Strong s-component, introduced by Clayton Rassbach (1967) in order to reproduce more than 50% of solar ²⁰⁸Pb,. Active in low-Z low-mass AGB stars (≤1.5M_☉ Gallino et al. 1998, see also Kappeler et al. 2011 for a recent review)
- Extant chemical evolution models underestimate the Galactic production of Sr, Y and Zr as well as the Solar System abundances of s-only isotopes with 90 < A < 130. To solve this problem, an additional (unknown) process has been invoked, the so called LEPP (Light Element Primary Process, see Travaglio et al. 2004) The ratio of neutron source/seed nuclei is key

CONSTRAINTS - GCE

- Salpeter
 1995
- Miller
 Scalo
 1979
- Ferrini et al. 1998
- Kroupa
 2002
- Chabrier
 2003

- Stellar nucleosynthesis seeks to understand the origin of the isotopes.
- We must consider binaries and single stars. Some systems require multidimensional modelling.
- There are uncertainties from the stellar modelling and nuclear physics.
- To understand the contribution to GCE, the yields need to be integrated over an IMF which is yet another source of uncertainty.
- The best way to quantify the uncertainty is to systematically compare GCE calculations with different yields and IMFs.
- $\cdot\,$ There are still many open questions.

WHY NO R-PROCESS IN MASSIVE STARS?

- $\cdot\,$ The entropy per baryon (S)
- \cdot The expansion timescale (au)
- \cdot The electron fraction (Y_e or η)

Entropy For radiation dominated environments : ${\rm S} \propto {\rm T}^3/\rho$

- $\cdot \uparrow T$, $\uparrow S$.
- \cdot Photodisintegration destroy seed nuclei ${\rightarrow}{\uparrow}Y_n/Y_{seed}$

The expansion timescale $\uparrow \tau$, the less time remains to form seed nuclei.

$$Y_{e,eq} \simeq \frac{\lambda_{\nu_e}}{\lambda_{\nu_e} + \lambda_{\bar{\nu}_e}}$$

 $Y_e < 0.5 \rightarrow$ neutron rich

For successful r-process we want high entropy, short expansion timescales, and low electron fractions.

 \cdot Entropy too low, $\lambda_{ar{
u_{
m e}}}$ too low