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Introduction



Context, Motivation & Takeaway

e Planets interact gravitationally with the disk in which they form.
e Planet-disk interaction - important in shaping planetary systems.
e Studied for several decades in gaseous disks.

e Classical theory leads to fast inward migration problem.

e Dust is ubiquitous but its role on migration has not been assessed.
e This work is a first step in this important direction.

Dust-driven migration could play an important role in the
formation history of planets.



Planet-disk interaction in gaseous disks

e PPDs support wave
propagation.

e The effect of this propagation is
a global-scale spiral wake.

e In the limit of a cold disk
the system behaves like the

Saturn rings.

e The spiral wake can be
interpreted as the constructive
interference of waves launched
at some locations in the disk

Top: Numerical simulation (Ogilvie & Lubow 2002).

Bottom: Position the wake (Ogilvie & Lubow 2002)



Planet migration

e The waves induced by the Angular momentum

2
planet carry energy & angular L=mpQyr,
momentum.

o Torque
e These quantities are usually
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. Nr=—=2mpr, [ Qp + ——
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Planet migration
e This mechanism is the driver of dr ( 2 ) -

planetary migration. dt — \ mpr,Q,

Torques, however, are not necessarily linked to waves.



MIGRATION RATE
IS PROPORTIONAL TO THE TORQUE



Classical sources of torque

Two main (classical) sources of planet torques in PPDs:
(Goldreich & Tremaine 1979, 1980, Lin & Papaloizou 1979, ..., Kley & Nelson 2012)

Lindblad torque (-) Coorbital torque (+)

e Typically dominant over the e Locally strong.

co-orbital torques. e Strongly depends on disk physics.

® Does not depend on disk physics. e Sensitive to gradients of intensive

e Main parameter is g = mp/M,. quantities (temperature, density,
vortensity, ...). 5



Fast inward migration problem

Planet migration is usually fast.
In order to reproduce the observed distribution of exoplanets,

mechanisms able to slow down the migration rate are needed.

(e.g., Ida & Lin 2004, Cossou et a. 2014, Morbidelli & Raymond 2016)



UNDERSTANDING COORBITAL TORQUES
IS CRUCIAL TO CORRECTLY DESCRIBE
THE MIGRATION HISTORY OF PLANETS.



Problem



Dust dynamics in the presence of a planet
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Planet migration in dusty disks

e PPDs are composed of gas and a small fraction of dust, pebbles and

rocky fragments.
e It is typically accepted that the dust-to-gas mass ratio is ~ 1%.

e So, is dust relevant for migration?

Let’s make some estimations to answer this question...



Estimating coorbital dust torques

Torque estimation _ . .
How much torque can an asymmetric coorbital region exert on a planet?

e Let's assume an axi-symmetric
disk and a horseshoe described
by a density distribution of the
form

Y4 =2400(p;A)

© is the step function



Estimating coorbital dust torques

The torque can be computed as:

Mq = / —Zd%dg’x

Do
o = Ta0qrs,
/ A)E2/A /HX; r?sing dedr’
—or J1 [1+r’2—2r’cosgp+(6h)2]3/2
2 /
M <M |max = [T
Pl < Pl = () = 5

x/: width of horseshoe; §: smoothing length; h: disk aspect ratio
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Dust horseshoes

e Dust is not directly affected by pressure forces

N () - Ve - Ve,

Stokes number S governs dust-gas coupling

At fixed planetary mass, the horseshoe region width depends on S,
leading to different scalings.

S<1 ~ S>1
| e |
T T
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Estimating coorbital torques: gas vs dust

For low planet mass, gas torque is [} o< g (e.g. Tanaka et al. 2002):

102 4 / s
FI’, ’

101 4 L.
.

1071 4

Yd0/Sgo = 1072

1077 10-¢ 1075 1074 1073

This is interesting! For low g dust torques can dominate over gas torques.
But when do we expect dust horseshoe orbits to be modified?
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sub-Keplerian motion and dust dynamics

Dust momentum (steady-state):

v, Qk
v, Orv, — ;p =-3 (v, — v, ) — Q&r
VvV, Qk
Vi Or v + r(p = s (Vo = vio)

Dust velocity field:
(Takeuchi & Lin, 2002)

1 S
v g
1827 152K
1
Vo = Vo — §8V,

n = —h*dInP/dInr; sub-Keplerian gas rotation



When does drift modify dust horseshoe orbits?

An important timescale is
the horseshoe libration time:

- 2r 4 4
Ths = ——(<— X —
" Qp — Qs 3xs P

Dust crosses the horseshoe region in @ °
a time:
e |2 1S (%) g

Vv, apS — L.5a \ rp P

For 74 shorter than 7,4
significant modifications to the horseshoe orbits are expected.
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Drift vs Horseshoes
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Dust horseshoe orbits are modified by dust drift below the black line.
This is the region of parameter space where dust torques may matter.
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Model, Simulations & Results




Physical model

We solve a two-fluid system:

Model
% +V-(Xgvg) = 0
% +V-(Xqvqa) = 0
%+vg-va = —Vqﬁ—e(g{(vg—vd)—zl;—v-T
% +vqg-Vvg = —Vo— Q?K (Va — vyg)
P(r) = c¥g

For e = ¥4/X, < 1, we can neglect dust feedback onto gas.
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Numerical domain

FARGO3D code (Benitez-Llambay & Masset 2016) - 2D-cylindrical mesh

Domain extent is important z

e Lindblad resonances (in & out)

Resolution is important!
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Results: Let’s look at one example

Normalized torque

=
S

3.36

— dust
— gas
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t regimes: gas vs gravity dominated

Stokes number: 0.04 Stokes number: 0.26 Stokes number: 0.55 Stokes number: 3.36
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e map
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Final remarks

Global fast outward migration of small cores is naturally obtained.

e Dust-driven migration could be dominant mode for small bodies.

Dust-torque is larger than thermal torque (Benitez-Llambay et al.
2015). Need to model both of these self-consistently.

Dust torques scale with disk metallicity. Implications for giant
planets in high-metallicity systems.

Takeaway: Dust torques could play an important role in the formation
history of planets, including those in our Solar System. A complete
assessment requires realistic models for the dust distribution close to the
planet (dust feedback, dust accretion, planet migration, other planets).
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