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Planet formation

Size and time —>

Dust Pebbles Planetesimals Planets
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> Planets form in protoplanetary discs around young stars as dust grains
collide and grow to ever larger bodies

> Pebbles form by collisional sticking
> Pebbles have poor sticking properties and drift rapidly towards the star

> Planetesimals likely form by gravitational collapse of dense pebble
filaments

» Protoplanets grow to planets by accreting planetesimals, pebbles and gas



Limits to pebble growth
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(Birnstiel, Fang, & Johansen, 2016) (Testi et al., 2014)

> Dust growth rate v, = R’/R, drift rate yar = £/r

> Pebbles grow maximally to a size where the growth time-scale equals the
radial drift time-scale (Birnstiel et al., 2012; Lambrechts & Johansen, 2014)

> Yields cm-sized pebbles in inner disc and mm-sized pebbles in outer disc,
in good agreement with observations

» Bouncing and fragmentation result in even smaller pebble sizes

= Protoplanetary discs are good pebble factories



Particle concentration mechanisms

Streaming instabilities

Eddies

Pressure bumps / vortices
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(Johansen et al., Protostars and Planets VI, 2014 arXiv:1402.1344)

Three categories of particle concentration:

» Between small-scale low-pressure eddies
(Maxey, 1987; Cuzzi et al., 2001, 2008; Pan et al., 2011)

> In pressure bumps and vortices
(Whipple, 1972; Barge & Sommeria, 1995; Klahr & Bodenheimer, 2003; Johansen et al., 2009a)

» By streaming instabilities
(Youdin & Goodman, 2005; Johansen & Youdin, 2007; Johansen et al., 2009b; Bai & Stone, 2010a,b,c)



Gravitational collapse

00
x[H]

(Johansen, Mac Low, Lacerda, & Bizzarro, 2015) (Schéfer, Yang, & Johansen, 2017)

» Initial Mass Function of planetesimals at up to 5123 resolution
(through European PRACE supercomputing grant)

=- Filaments fragment to planetesimals with contracted radii
25-200 km



Initial Mass Function of planetesimals
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(Johansen et al., 2015) (Simon et al., 2016)

> Differential mass distribution is well fitted by a power law with
dN/dM oc M~1®

Results with Pencil Code and Athena are very similar
Most of the mass resides in the largest planetesimals
Characteristic planetesimal size of ~100 km

Small planetesimals dominate in number
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Power law concatenated by exponential at high masses (Schifer et al., 2017)



Metallicity threshold
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Stokes number (7;) (Carrera et al., 2015)
» The streaming instability makes filaments above threshold metallicity
» Carrera, Johansen, & Davies (2015) mapped the metallicity threshold as
a function of St in 2-D simulations
> Lowest around a sweetspot at St ~ 0.1 (1 cm at 10 AU)
» Such pebbles can form by sticking outside ice line (Drazkowska & Dullemond, 2014)
» The threshold also depends on the radial pressure support (Bai & Stone, 2010)



Concentrating small particles in 3-D
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> With new drag force scheme of Yang & Johansen (2016) we run 3-D
simulations of small particles to 1000 orbits (Yang, Johansen, & Carrera, 2017)

> Small particles concentrate at much lower metallicities than previously
thought

> Opens up the possibility to concentrate chondrule-sized particles to form
asteroids



Forming planetesimals by photoevaporation
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(Carrera, Gorti, Johansen, & Davies, 2017)

»> Photoevaporation models including X-rays, EUV and FUV show evolution

in gas-to-dust ratio (Gorti et al., 2015)

Typically 50-100 Mg of pebbles remain after gas disc gone

Pebbles turn into planetesimals when including prescription for streaming

insta bl|lty (Carrera et al., 2017)

debris phase

Efficient delivery of planetesimals to terrestrial planet formation and to

? How to form planetesimals that grow to gas-giant cores?



Achieving the conditions for the streaming instability early
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> Lots of ongoing work on early planetesimal
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> Pebbles may grow large by condensation
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» Also dust pile up inside ice line
(Ida & Guillot, 2016)
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The effect of background turbulence
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(Yang, Mac Low, & Johansen, submitted)

» Protoplanetary discs may accrete in magnetised + = 100P

surface layers (Gammie, 1996)

» The mid-plane has low a-viscosity, but high
diffusion (Okuzumi & Hirose, 2011)

Pebbles can not sediment below H,/H; ~ 0.1

Filaments still form by the streaming instability

above Z = 0.02, helped by the weak radial

diffusion (Yang, Mac Low, & Johansen, submitted)

» Are these models consistent with observed
stirring? (e a ~ 10~% in HL Tau, Pinte et al., 2016)
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Summary

» Many particle concentration mechanisms are known

» Streaming instability is very powerful because it can lead to very
high particle concentration

> Simulations of the streaming instability are converged on the
resolved scales, but higher resolution gives stronger particle
concentration as the filamentary structure is resolved better

» The initial mass function of planetesimals follows a shallow power
dN/dM o« M~9 with index g =~ 1.6

> The streaming instability can concentrate particles down to mm
sizes, but role of realistic turbulence needs to be explored better



