Shocks and Caustics and their importance for galaxy formation

Oliver Hahn

Laboratoire Lagrange Université Côte d'Azur Observatoire de la Côte d'Azur

European Research Council Established by the European Commission

Anisotropic Collapse in Random Fields

Density fluctuations determine where and how structure forms

Peaks exceeding threshold collapse to form galaxies/haloes

This gives rise to the large-scale structure of the Universe...

cf. also Zeldovich(1970), White+(1987), Pauls & Melott (1995), Bond+(1996)

Temperature sets the small scales

- DM kinetic temperature must be cold(ish)
- gas temperature set by UV background (lower-z), or CMB (first stars)

Collisional vs collisionless dynamics

NASA/CXC/M. Weiss

Collisional and Collisionless Evolution

Evolution governed by Boltzmann equation

$$\frac{\partial f}{\partial t} + \frac{\mathbf{v}}{a^2} \cdot \boldsymbol{\nabla}_{\mathbf{x}} f - \boldsymbol{\nabla}_{\mathbf{x}} \phi \cdot \boldsymbol{\nabla}_{\mathbf{v}} f = C[f]$$

Higher-Dimensional Folding...

Shape of potential determines dynamics

Eulerian space

collisionless case:

phase space sheet winds up, but never tears

Phase space (2+1 cut)

Lagrangian space

PSG2018, Berlin, 13/4/2018

Oliver Hahn (Lagrange/OCA)

Cosmic web formation/singularities

Formation of structure from catastrophes... Zeldovich pancakes...

$$\rho = m_{\rm DM} \left| \frac{\partial x_i}{\partial q_j} \right|^{-1} \simeq m_{\rm DM} \prod \left(1 + \operatorname{eig} \left\{ \frac{\partial v_i}{\partial q_j} \right\} \right)^{-1}$$
The second second

Can be found on webpage of Jaan Einasto

today's version... (run on the fly)

Halo/galaxy formation, CDM-WDM

WDM -> introduce a small-scall cut-off to perturbations

monolithic formation of haloes at the free-streaming scale

Milky-Way in CDM and WDM

Lovell+2013

Halo/galaxy formation in WDM

Oliver Hahn (Lagrange/OCA)

Haloes/galaxies in the LSS

moving slice through cosmological volume (by J. Stuecker, cf. Stuecker+2017)

How to reconcile with LCDM hierarchical formation?

largest scale turning non-linear determines LSS

-> many haloes in clusters, few in voids (e.g. Kaiser 1984)

and galaxies?

form inside DM haloes, but from dissipative processes

do galaxies care about LSS beyond halo mass?

Collisionless component (DM, galaxies) does not isotropize

Velocity dispersion in collapsed regions retains memory of collapsed dimension

Buehlmann&OH (2018, in prep.)

A zoom in on multi-stream regions

• Vorticity for std. gravity pure multi-stream phenomenon!!

$$\nabla \cdot \langle \mathbf{v} \rangle = \langle (\nabla \log \rho) \cdot (\mathbf{v} - \langle \mathbf{v} \rangle) \rangle + \langle \nabla \cdot \mathbf{v} \rangle$$

$$\mathbf{\nabla} \times \langle \mathbf{v} \rangle = \langle (\mathbf{\nabla} \log \rho) \times (\mathbf{v} - \langle \mathbf{v} \rangle) \rangle + \langle \mathbf{\nabla} \times \mathbf{v} \rangle$$

Shell-crossing breaks the trivial coupling between density and velocity divergence

Collisionless component will retain some memory of its initial conditions, but gas...?

Gas: Shock Formation, Cooling...

Phenomenology similar to DM, but produce shocks instead of caustics cooling possible due to increased density in collapsed region

Agertz+2009

Gas around high-z galaxies

Structure of high-z pancakes

DM caustics (solid gray) vs. hydro shocks (dashed gray)

Shandarin & Zeldovich (1989):

 $rac{x_{
m sh}}{x_s} = rac{\gamma-1}{2} \left(\gamma+2
ight)^{1/2} \stackrel{\gamma=5/3}{\simeq} 0.64$

 $\frac{x_{\rm sh}}{x_s} \simeq 0.6$

(unpublished, with A. Dekel)

one measures

Anisotropic accretion onto galaxies at high-z

In principle streams dump very efficiently gas into CGM at high z.

Role of galactic process (outflows) can counteract this...

(and galaxy formation is just so inefficient...)

LSS influencing galaxy evolution?

Differences in galaxy assembly?

Dedicated zooms of early and late forming halos indicate possibly puffier disks and older stellar populations at fixed halo mass

Borzyszkowski+2017

can one test this in observations?

How to quantify the cosmic web in observations?

Usually: from density field estimate

- then eigenvalue signature of Hessian of potential (OH+2007) or density (Aragon-Calvo+2007)
- or Morse properties of smoothed density field (Sousbie 2011),
- or ...

Eardley+(2015), GAMA data

see also review on different methods by Libeskind+2018

Leclercq+(2016), forward modelling of SDSS data

Environmental Dependence of Galaxy Formation

Anything `beyond halo mass` ?

Segregation of passive/star-forming galaxies towards filament centers, but is this driven by halo mass or by LSS environment?

Laigle+2017, skeleton identification on photometric COSMOS2015 data

Environmental Dependence of Galaxy Formation

iHOD (blue)

iHOD (red)

 $\delta_{\rm s}: [0-20]$

Anything `beyond halo mass` ?

in SDSS, galaxy colour appears only driven by halo mass, LSS differences through different halo mass function at different LSS density

Oliver Hahn (Lagrange/OCA)

 $\alpha_5 : [0-20]$

Anisotropic mergers – BCG alignment

Binggeli effect — alignment of central cluster galaxies

Intrinsic Alignments from Lensing

Lensing potential

$$\phi(\boldsymbol{\theta}, \chi_s) = \frac{2}{c^2} \int_0^{\chi_s} d\chi \frac{d_A(\chi_s - \chi)}{d_A(\chi_s) d_A(\chi)} \Phi(\chi, d_A(\chi)\boldsymbol{\theta})$$

weak shear is a weighted integral of the tidal field:

$$\gamma_1 = \frac{1}{2}(\phi_{,11} - \phi_{,22})$$

 $\gamma_2 = \phi_{,12}$

Observable is total ellipticity

$$\epsilon_{\rm obs} = \gamma + \epsilon_I$$

Correlation function thus becomes

$$\langle \epsilon_{\rm obs} \epsilon'_{\rm obs} \rangle = \langle \gamma \gamma' \rangle + \langle \gamma \epsilon'_I \rangle + \langle \epsilon_I \gamma' \rangle + \langle \epsilon_I \epsilon'_I \rangle$$

structure **GI** II

structure

Signal for galaxy formation

Intrinsic Alignments from Lensing

Illustris simulation (Hilbert+2017)

massive galaxies and satellites most aligned

Horizon-AGN simulation (Chisari+2017)

haloes more aligned than galaxies! (mergers!!!)

Summary

- shocks and caustics ubiquitous in large-scale structure
- galaxies evolve as part of cosmic web
- not clear (at low z) if web has any importance when dissipative processes (gas!) is involved, or halo mass determines everything (galaxy formation is inefficient!)
- high-z observations: we'll see
- effect on collisionless dynamics has been demonstrated at high significance (BCG/LRG alignment)