

Dynamical processes in Galaxies

Françoise Combes Observatoire de Paris

14 April 2018

N1433

Outline

Angular momentum transfer Dynamical features: nuclear rings, spirals, bars

Fueling due to gravity torques
Feedback, outflows (SF, AGN)

→ Decoupling, different orientations

Angular momentum (AM) transfer

Equivalent « viscosity » from gravitational instabilities (Toomre criterium) *Lin & Pringle 1987*

Angular momentum (AM) transfer

Cold disks form by transferring AM outwards Bars, more robust than spirals

Decoupling of a secondary bar In between the two ILR: perpendicular orbits x2

Do not sustain the bar anymore

New faster bar inside the ILR ring

+ weakening of the bar, z-resonance Peanut-shape bulge

Inside out two-bar formation

Embedded bars in 30% of all barred galaxies

Long-lived two-bar galaxies *Wozniak 2015*

From clumpy high-z galaxies→ nuclear bar, then a primary bar

No resonance in common →No mode coupling SFR in the gas stabilises the nuclear bar

Radial migration

Thin and thick disk migrations

Simulation: potential and pattern speed vary → Real migration

Halle et al 2018

Fueling: Bar gravity torques

Torques computed from the HST red image, on the gas distribution

Torque map for NGC 3627 (Casasola et al 2011) Contours= gas density

Correlation between bars and AGN

Schawinski et al 2010, Cardamone et al 2011

Statistics -- Time-scales 10-100pc fueling

→ Only ~35% of negative torques in the center, About 20 galaxies (Garcia-Burillo & Combes 2012)

→ Rest of the times, positive torques, gas stalled in ring

→ Fueling phases are short, a few 10⁷ yrs (feedback)

→ Star formation fueled by the torques, always associated to AGN activity, but with longer time-scales

Small-scale accretion

Simulations of gas accretion onto a central BH \rightarrow thick disks (~10pc) Zoomed simulation: cascade of m=2, m=1, + clumps and turbulence

When fgas large 10²²-10²⁵ cm⁻² Clump unstable Warps, twists Bending → Thick disks

→ Dynamical friction of GMC If M= 10^6 M_☉ t~80Myr (r/100pc)² varies in 1/M

Hopkins et al 2011

Gas is piling up in the center: up to f=90%

Feedback in low-luminosity AGN

NGC 1433: barred spiral, **CO(3-2) with ALMA** Molecular gas fueling the AGN, + outflow // the minor axis

 $M_{H2}=5.2 \ 10^7 \ M_{\odot} \text{ in FOV=18''}$ 100km/s flow 7% of the mass= 3.6 10⁶ M_{\odot} Smallest flow detected

→ L_{kin} =0.5 dM/dt v² ~2.3 10⁴⁰ erg/s L_{bol} (AGN)= 1.3 10⁴³ erg/s Flow momentum > 10 L_{AGN} /c *Combes et al 2013*

Gravity torques fuel the ring *Smajic et al 2014*

Torque map in NGC1433

Torques are positive inside 200pc and negative outside
→ Gas is piling at the 2nd ring

Smajic et al 2014

 2^{nd} ring at 200pc= ILR of the nuclear bar

The NGC1566 nearby barred Sy1

N1566 SAB Sy1

4 arcmin FOV=18 " Spatial resolution 0.5 arcsecond ~25pc Combes et al 2014

Overlay CO(3-2) contours on HST image

Schematic orbits, and gas behaviour

Stellar periodic orbits

Periodic orbits in a potential in $\cos 2\theta$ The gas tends to follow these orbits, but rotates gradually by 90° at each resonance

a) without BH, leading

b) with BH, trailing

NGC1566: gravitational torques

Gas is driven inwards

Trailing spiral inside the ILR ring of the bar→ BH influence on the dynamics

Torques on deprojected image

N613

100

ALMA (Miyamoto 2017)

Böker et al 2008 **SINFONI** 29°25'05" 29°25′10″ 1^h34^m18.5 18.°0 -0.5 $^{-1}$ 5 -5 0

100

-100

0

With 0.09" x 0.06" resolution: nuclear spiral +torus Combes et al 2018

Blue=HeI

Red= FeII

 $Green = Br\gamma$

UFO+ molecular outflow Mrk231

+HCN

Non-alignment with host disk

Like in the MW, the nuclear disks are not aligned with the galaxy, nor the ISM nuclear disks

In NGC 4258, the maser disk 0.2pc in size is misaligned by 119° from the galaxy disk, the jet is in the plane

Many Seyfert have their jet not perpendicular to the main disk (Schmitt & Kinney 2002; Jog & Combes 2009)

CNR: circumnuclear ring 2-3pc in radius HCN in orange Ionized gas in green *Inclination of 20°/plane*

Mini-spiral $60M_{\odot}$ Cavity $200M_{\odot}$ CNR $10^{6}M_{\odot}$ 7 10^{4} cm⁻³ 300K

Offcentered nucleus and outflow in NGC1068

Detection of molecular tori

ALMA CO(6-5) and 432µm dust emission → Torus of 7-10pc in diameter in NGC1068

More inclined than the H₂O maser disk Papaloizou-Pringle instability

Garcia-Burillo, Combes, Ramos-Almeida et al 2016, R=3.5pc torus

Molecular torus inside a polar dusty cone

Marinucci et al 2016

1"=50pc, Gratadour et al 2015 SPHERE NIR

Polar dust distribution

Green: 100pc along the polar axis *Asmus et al 2016*

149 AGN, 21 show extended dust distribution, 18 on the polar axis (MIR) Aligned with [OIII], [OIV] radio, masers, etc..

Dusty winds, associated to the molecular outflows?

ALMA observations of NGC 1377

Precessing jets in N1377: as in micro-quasars

SS433 VLBA 15GHz, 1mas= 3AU *Mioduszewski et al.* 2006 Inner jet 5mas Motion 7-10mas/day

Model of a simple precession The jet changes sign symmetrically North/South Vflow= 250-600km/s Launched r < 10pc

Aalto et al 2016

High-resolution simulation of the Milky Way Zoom in the central 200pc region

Face-on

How the gas is accreted

Central 10pc of M31

P3

Existence of two disks of stars -- P1+P2, excentric old stars -- P3, star burst 200 Myr old

Different inclination, more face-on than M31 (77°) P3 σ =670km/s, Vcir=1700km/s M_{BH}= 1.5 10⁸ M_☉

Bender et al 2005 Slow mode: Tremaine 2001

Surprising high compactness Cannot be only BH-stripped giants → it is possible to form stars in the strong tidal field of a BH

Lauer et al 2012

Triple nucleus in M31

P3: young star cluster, of age 100-200 Myr How this cluster could have formed?

Formation of the young P3 cluster

In situ, r <1pc, age 100-200Myr (similar to MW?)

Stellar mass loss from the P1+P2 disk, if pattern speed <3-10 km/s/pc fixes the size of P3 Gas cloud orbits \rightarrow crossing, dissipation and infall r< 1pc R1 the last non-crossing orbit Gas mass for P3: $10^5 M_{\odot} \ll 10^7 M_{\odot}$ of P1+P2

Winds at 10⁻⁴ M_{\odot}/yr, fills P3 in ~500Myr Should produce repeated star bursts a CND of a few 10⁴M_{\odot} might be visible in CO² (Δ V ~1000km/s)

P. Chang et al 2007

Upper limits on the gas accretion

R.A. (2000.0)

Melchior & Combes 2017

SUMMARY

→ Fueling: Primary bar drives gas → 100pc
Then nuclear bar from 100pc to 10pc
Accretion 1/3rd of the time

→ At scales ~1-10pc, viscous turbulence, clumps, warps, bending, dynamical friction, formation of thick disks/torus, when there is gas Frequent m=1 in stellar disks

➔ Feedback, outflows are present, due to Starburst, and to AGN Precession, strong coupling due to mis-alignment

➔ Mis-alignment between small scales and large scales expected, due to different dynamical time-scales

