The Magnetic Field in the Galaxy's Central Molecular Zone: Collimated Galactic Outflows, Star Formation, and Pulsar Lifetimes

Mark Morris, UCLA

Figure: Nord et al. 2004 VLA A array, 330 MHz

Stars, Planets & Galaxies, Berlin, April 15, 2018

Galactic Center Radio Arc (3.1 GHz)

Non-thermal Radio Filaments at $\lambda 20$ cm

Yusef-Zadeh, Hewitt, and Cotton 2004

 \rightarrow Indication of a predominantly vertical, or dipolar field

Vertical columns, from dust emission

IRAC 8 μ m – S. Stolovy

Point #1 \rightarrow

The vertical (dipole) magnetic field collimates outflows from the Galactic center (in concert with the density gradient)

Bipolar cavities of hot gas can be seen on 3 different scales above the Galactic center:

- The bipolar X/radio lobes (~15 pc)
- The Galactic Center Lobe (~150 pc) (but one-sided?)
- The Fermi Bubbles (\sim 8 kpc)

The Galactic Center Lobes -- 150 pc

(as viewed in X-rays with XMM) Note sharp edges – these are bubbles

Ponti, MM, et al. 2015

The "Galactic Center Lobe" – 150 pc

WISE - 24 μ m

– Double Helix Nebula (MM+ 2006)

Fermi Bubbles – 8 kpc

A uniform vertical magnetic field over the CMZ ightarrow

 Strongly anisotropic diffusion of cosmic rays
Relatively small cosmic ray residence time
Feeding of cosmic rays into the Fermi lobes (Crocker & Aharonian 2011) adds to collimation by the Galactic density gradient.

Su, Slatyer & Finkbeiner 2010

Point #2:

The magnetic field in clouds of the central molecular zone is affected by tidal shear, so it follows elongated cloud morphologies.

The new instrument HAWC+ on SOFIA is obtaining spectacular results on polarized emission from magnetically aligned dust grains.

Chuss et al. 2003 — (KAO observations)

HAWC+ image of the circumnuclear disk -

Polarization results to be announced (Dowell et al.)

→ indicate a highly ordered, and thus strong, magnetic field in clouds

Point #3 (a speculation):

 Indications are that the magnetic field in Galactic center clouds is strong – milligauss

 Stars form abundantly in the central molecular zone

White: massive stars with X-ray counterparts, presumably colliding-wind binaries Pink: WNL, WNE, WC, OB supergiants, LBVs

\rightarrow Questions raised:

- Can stars even form in a cloud with a strong magnetic flux without ridding themselves of the field through processes such as ambipolar diffusion?
- If a strongly magnetized star can form, can it retain its magnetic flux against the formation of buoyant magnetic bubbles that carry away flux?
- Or does dynamo action in stellar convection zones regenerate, maintain, and amplify the field?
- Are Zeeman measurements possible with foreseeable IR instrumentation, given the distance?

Carrying the speculation one step further \rightarrow

Neutron star remnants of massive star evolution in the Galactic center are highly magnetized – they are predominantly magnetars !

If so, this solves the missing Galactic center pulsar problem

- No surprise that there are neutron stars in the Galactic center. They manifest themselves in close binary systems as transients – bursting low-mass X-ray binaries
- Like black hole LMXBs (Hailey et al. 2018), they are more concentrated toward the Galactic center than field stars

Pulsar demographics in the Galactic center:

- very few, given the star formation rate and the typical 10⁷-yr spin-down time
- Ascribed to an inordinately large line-of-sight dispersion measure
- But then the magnetar PSR J1745-2900 was discovered as it underwent an X-ray burst in April 2013 (Degenaar+ 2013)
- The dispersion measure was unprecedented, but the pulsar WAS detectable in radio and X-rays (Eatough et al. 2013; Rea et al. 2013) indicating that other pulsars should be detectable UNLESS this one was

being seen through a fortuitous window

 ♦ So where are they? there's one other pulsar that has magnetar characteristics, so likely 2 known in the GC, out of a total of ~30 known magnetars

Limitations to pulsar detection \rightarrow pulse broadening and dispersion delay

SKA sensitivity analysis -- Eatough+2014

- → The implication of this hypothesis is that Galactic center pulsars should have a lifetime ~ 100 times less than pulsars stars in the Galactic disk
- The issue of the dispersion measure is at least an aggravating factor
- → The few pulsars that are seen in the Galactic center could themselves be relatively highly magnetized

Conclusions:

- The effect of a strong magnetic field on the evolution of massive stars may be profound
- Continued pulsar searches, especially with the Square Kilometer Array, will elucidate this issue