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Issues which affect the determination of the IMF :

1) The IMF does not exist !

2) What we call the IMF is a mathematical "hilfskonstrukt"
The estimation of this "hilfskonstrukt" is compromised by

the stellar mass-to-light relation
dynamical evolution of birth clusters (very early phase and long-term)
binaries
the most massive star in birth clusters
IMF = probability density distr.function
or an optimally sampled distribution function ?
evidence for top-heavy IMF in extremely massive star burst "clusters"
implications of this for the IMF of whole galaxies.
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Issues which affect the determination of the IMF :

the stellar mass-to-light relation
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Issues which affect the determination of the IMF :

dynamical evolution of birth clusters (very early phase and long-term)

binaries



Number of stars £, per log{m)

Number of stars ¢, per log{m)

MF(t) due to cluster evolution

f=0
102 | 5
] N =1.28 x 10
————— 4 x (N = 8000)
109 | t=10
- t = 0.3 Tdiss
t = 0.6 Tdiss
t = 0.9 Tdiss
0% F E
[ high-mass low-mass |
101 1 1 1 I 11 1 1 1 1 1 1 I 1
1 0.1
m [M,]
MF(t) due to cluster evolution
I I I I LI I I I I I I I f f— O
orE B) E N =1.28 x 10°
————— 4 x (N = 8000)
108 | ) - t=10
: dynamical 3 =3 Tdiss
t = 0.6 Tdiss
t = 0.9 Tdiss
10% E E
high-mass low-mass |
1 | 1 1 I 111 1 | 1 1 1 I |
+0 1 0.1

m [M]



Y [pcl]

Oh & Kroupa
2015, 2016

Sverre Aarseth Nbody6 code 0.000 Myr

30060 stars, ro].szO.Spc, nlqass segr., | | ~00
40l =1, uniform g-distr., Sana P-distr. i
200
sl I 100
150
3
{30 2
O} e . i
{175 =
20| -
15
—40} -
| | | 1 | 1
-40 -20 0 20 40
X [pc]
Clusters depopulate themselves
off low-mass stars and high mass stars.
A
loss

time-dependent

stellar mass

0.1Msun

>
150Msun



-10

Issues which affect the determination of the IMF :

the most massive star in birth clusters

IMF = probability density distr.function

or an optimally sampled distribution function ?

Young Stars with Disks

NGC 2071/2068

NGC 2024/2023

3-4 sigma
deficit

of massive
stars

I T adl 0 I T T T I T T T | T T T l
- B Megeath etal. 2012 —
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elt al. 2012, 20113) |

Lack of O stars

Many small / low-mass
groups or clusters do not
] yield the same IMF
] as one massive cluster

==
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RA (2000)

24

.0

stochastic IMF

in each group
is ruled out.




What is an optimally sampled distribution function ?

Given the mass reservoir in stellar mass M,
starting with the most massive star,
select the next most massive such that
M. is distributed over the distribution function
without Poisson scatter.

Kroupa et al. 2013
Schulz, Pflamm-Altenburg & Kroupa 2015

The above ansatz can be extended to a discretized optimal distribution of stellar masses:
Given the mass, M., of the population, the following sequence of individual stellar masses
yields a distribution function which exactly follows &(m),

Mi. = f ‘mE(m)dm, my<mig<mi, M= M. (4.9

i+l

The normalization and the most massive star in the sequence are set by the following two
equations:

1- f " E(m) dm, (4.10)

with .
M (Mmax) — Mmax = [ m E&(m)dm (4.11)

as the closing condition. These two equations need to be solved iteratively. An excellent approx-
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An important consequence of optimal sampling
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Weidner & Kroupa 2005, 2006; Weidner et al. 2010, 2013; Kroupa et al. 2013; Kirk & Myers, 2010, 2012;
Hsu, Hartmann et al. 2012, 2013; Ramirez Alegria, Borossiva et al. 2016
Mumax* = 300 Mg

LI I | I T I [N VAR B | I LI | LI
2 | Mmupmax* = 150 Mg
—~
1= / &(m) dm
\x mmax
“ mmax
E]. Mo = / m §(m) dm
z 3
~
=
a0 Dispersion of data » Mmax = fn(Mecl)
e) is highly inconsistent ] .
—_— with i an mmax -- Mecl relation
random / stochastic
O sampling from IMF —
1 A, |- I | I I | I - I | I I | I - I 1 l-

0 1 2 3 4 5
log,,(M, /M)

28



Confirmation
Oh & Kroupa, submitted; Yanetal. 2017

"isolated" O stars in LMC
Stephens et al. 2017

Open clusters:
Ram’irez Alegr’ia et al. (2016).

Real young populations
* are not stochastic ensembles
from invariant distr. functions

the star-formation hilfskonstrukt ility density distribution function
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Issues which affect the determination of the IMF :

1) the IMF does not exist !

2) What we call the IMF is a mathematical "hilfskonstrukt"
The estimation of this "hilfskonstrukt" is compromised by

the stellar mass-to-light relation
dynamical evolution of birth clusters (very early phase and long-term)
binaries
the most massive star in birth clusters
IMF = probability density distr.function
or an optimally sampled distribution function ?
evidence for top-heavy IMF in extremely massive star burst "clusters"
implications of this for the IMF of whole galaxies.

Pavel Kroupa: University of Bonn / Charles Universit:
Nbody models of binary rich initially mass segregated clusters

with redisual gas expulsion after birth
(Marks, Kroupa & Baumgardt 2008)

gas expulsion

~ ~
v. Y.
°
(4
0® ,
. @
, e e —— 4
stellar loss independent loose mostly
of mass low-mass stars
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P. Kroupa: University of Bonn / Charles University



low-mass MF slope c.

A sample of 20 Galactic GCs (de Marchi, Paresce &
with solid global MF measurements from Pulone 2007)
deep HST or VLT data.

low-mass MF slopec: )
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Top-heavy IMF in extreme-density environments :

THE STELLAR IMF DEPENDENCE ON DENSITY AND METALLICITY: Re-
solved stellar populations show an invariant IMF (Eq. 55), but for
SFRD Z 0.1 M /(yr pc®) the IMF becomes top-heavy, as inferred from deep
observations of GCs. The dependence of a3 on cluster-forming cloud density, p,
(stars plus gas) and metallicity, [Fe/H],can be parametrised as

3 = (9, m>1M; A z<—0.89
az = —0.41 x x + 1.94, m>1M,; A z>-089

z = —0.14 [Fe/H] + 0.99 log,, (p/ (106 M, pe=3)).

(65)

Marks et al. 2012
Kroupa et al. 2013 (arXiv:1112.3340)

Star-counts: Correct star-counts in R136 for ejected stars
== [MF in R136 top-heavy (Banerjee & Kroupa 2012)

Excess of massive stars in whole 30Dor region
(Schneider et al. 2018)

Top-heavy IMF in Magellanic Bridge cluster NGC796
(Kalari etal. 2018)
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Using for m <1Mg

Fe
012 = 041/2C + 0.5 [ﬁ]
estimated from resolved MW populations
(Kroupa 2001)

where the canonical
solar-abundance values are
a1 =13 0.07<m/Ms <0.5
toe =23 0.5 <m/My < 1.3

1e+06 — ———y —r
i i Marks et al. 2012
100000  Kroupa et al. 2013 (arXiv:1112.3340)é

k|
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+ .
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01}
0.01 S : .
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Figure 5. Suggested shape of the stellar IMF for different metallicities,
[Fe/H] (not taking into account the density dependence of the IMF). The
IMFs are scaled such that their values agree at m = 1 M. Above 1 M, the
IMF slope is determined by the present work (Fig. 4, equation 11). Below
1 Mg the parametrization is determined by Kroupa (2001, equation 12),
whose results suggest tentative evidence that more metal-rich environments
produce relatively more low-mass stars. Note that only the metallicity de-
pendence is shown, but not the dependence on mass (Fig. 2) or density

(Fig. 3).
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Issues which affect the determination of the IMF :

implications of this for the IMF of whole galaxies.



Composite Stellar Populations

Stars form in a clustered mode
Thus, the Integrated Galactic IMF follows from

IGIMF = Z of IMFs (in all clusters)

Mecl,max(SFR(t))
SIGIMF (m7 t) — / £<m S mmax(Mecl)) gecl(Mecl) dMecl

Mecl,min

Natural explanation of the
mass-metallicity relation,
radial Halpha cutoff
vs UV extended disks
of galaxies
and many other problems in
understanding galaxies.

. J/

Jerabkova et al. 2018; Yan, Jerabkova etal. 2017; Fontanot et al. 2017;
and recent papers by Simone Recchi et al.; Sylvia Ploeckinger et al.
and previous papers by Koeppen et al., Pflamm-Altenburg et al., Weidner et al.
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The IGIMF for galaxies with different SFRs & [Fe/H]

1Jerabkova et al., 2018 submitted

The IGIMF for galaxies with different SFRs & [Fe/H]

et al., 2018 submitted
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The IGIMF for galaxies with different SFRs & [Fe/H]

1Jerabkova et al., 2018 submitt1e
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E galaxies
formed with
top-heavy IMFs

confirming Matteucci
(1994) !

and see recent

work by Vazdekis



Kennicutt et al. (1994) SFR relation (for a pure Salpeter power-law IMF betw. 0.1 and 100 Msun )

SRR

(S% always for all galaxm\
/

Ly, = 1 3.0207 x 10712 erg Nion/6t, (3)
Mmax
Mon,&t = / £ vF (m)]Vion,ét(m) dm, (2)
Miow
pw=1 (Pflamm-Altenburg etal. 2007)
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Fig. 8. Corrections to the Kennicutt SFR-Ha relation. The true (IGIMF) SFRs are divided by the Kennicutt value, for the same Hea flux and for
the IGIMF models and metallicities shown in Fig. 7. The He flux of LeoP is shown by the vertical dotted line in both panels. The two panels
demonstrate that dwarf galaxies wth He fluxes near 10* erg/s have a SFR which is more than 100 times larger than that suggested by the Kennicutt
relation, while massive or profusely star-forming galaxies with Ho ~ 10* erg/s have SFRs which can be 10-100 times smaller than given by the
traditional Kennicutt relation. This has major implications for understanding galaxy formation and evolution.
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Fig. 8. Corrections to the Kennicutt SFR-Ha relation. The true (IGIMF) SFRs are divided by the Kennicutt value, for the same Hea flux and for
the IGIMF models and metallicities shown in Fig. 7. The Ha flux of LeoP is shown by the vertical dotted line in both panels. The two panels
demonstrate that dwarf galaxies wth He fluxes near 10* erg/s have a SFR which is more than 100 times larger than that suggested by the Kennicutt
relation, while massive or profusely star-forming galaxies with He ~ 10* erg/s have SFRs which can be 10-100 times smaller than given by the
traditional Kennicutt relation. This has major implications for understanding galaxy formation and evolution.
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Fig. 8. Corrections to the Kennicutt SFR-Ha relation. The true (IGIMF) SFRs are divided by the Kennicutt value, for the same Hea flux and for
the IGIMF models and metallicities shown in Fig. 7. The He flux of LeoP is shown by the vertical dotted line in both panels. The two panels
demonstrate that dwarf galaxies wth He fluxes near 10* erg/s have a SFR which is more than 100 times larger than that suggested by the Kennicutt
relation, while massive or profusely star-forming galaxies with Ho ~ 10* erg/s have SFRs which can be 10-100 times smaller than given by the
traditional Kennicutt relation. This has major implications for understanding galaxy formation and evolution.
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Fig. 8. Corrections to the Kennicutt SFR-Ha relation. The true (IGIMF) SFRs are divided by the Kennicutt value, for the same Hea flux and for
the IGIMF models and metallicities shown in Fig. 7. The Ha flux of LeoP is shown by the vertical dotted line in both panels. The two panels
demonstrate that dwarf galaxies wth He fluxes near 10* erg/s have a SFR which is more than 100 times larger than that suggested by the Kennicutt
relation, while massive or profusely star-forming galaxies with He ~ 10" erg/s have SFRs which can be 10-100 times smaller than given by the
traditional Kennicutt relation. This has major implications for understanding galaxy formation and evolution.
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Dwarf galaxies have the same star-formation efficiencies
as L* galaxies

1
SFR: —Mneu ral gas
3 Gyr tral g

( )
i.e. every 10 Myr a galaxy transforms

0.3 % of its neutral gas mass
into stellar mass.

r Conclusions x

What we call the IMF is a mathematical "hilfskonstrukt"

This "hilfskonstrukt" 1is
an optimally sampled distribution function
(star formation is not probabilistic but
highly self-regulated)

This "hilfskonstrukt" wvaries with physical conditions

(Star-formation "hilfskonstrukt" = galaxy-wide "hilfskonstrukt" )

Important implication for galaxy evolution (& cosmology)




