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Stellar remnants are not dead (even in isolation!)

The power of compact objects: X-ray binaries
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Energy release in compact objects:

gravity -> differential rotation -> magnetic fields -> jets
-> accelerated particles, radiation (radio to gamma)

2. .. :
B? /87 can exceed pc” in the emission region

Observed phenomena are powered by conversion of macroscopic
(kinetic, magnetic) energy to heat, accelerated particles, radiation
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Observed phenomena are powered by conversion of macroscopic
(kinetic, magnetic) energy to heat, accelerated particles, radiation

I. Magnetic reconnection

Mechanisms:
II. Shocks

III. Electric discharge

IV. Turbulence/wave damping



I. Magnetic reconnection

— Magnetic flares near accreting black holes
— Flares in magnetars (fireballs)

— Reconnection in pulsar winds and BH jets
(Crab Nebula, blazars, GRBs...)
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Reconnection near black holes

Parfrey, Giannious, AB 2015



n,,/n, ab initio (PIC) simulations
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Parameters of the reconnection problem
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Parameters of the reconnection problem
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2. Compactness: cooling time vs. light crossing time
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Radiative reconnection
(cooling time << light crossing time)

AB 2017

1. Plasmoids are cool + fast => “chain Comptonization”

2. Energetic photons (>1 MeV) convert to e+- pairs
=> reconnection layer self-feeds with plasma
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In progress:
radiative

PIC simulations
(Sironi, AB)

plasmoid chain
controlled by
magnetic stresses

(and drag)
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The radiative reconnection layer takes care of itself:

* feeds itself with plasma (e+-)
* feeds itself with photons (synchrotron)

a self-organized nonlinear machine with 2 parameters (£, o),
produces hard X-rays via bulk Comptonization
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I1. Shodk

Ejecta-powered radiation + cosmic rays
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Types of shocks

* collisional (atmospheric explosions)

* collisionless (solar system, SN remnants,
AGN jets, GRB afterglow)

* radiation-mediated (novae, SN breakout,
GRB jets,
GW counterparts)

non-relativistic & relativistic
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Types of shocks

* collisional (atmospheric explosions)

PIC simulations — e collisionless (solar system, SN remnants,
(injection problem) AGN jets, GRB afterglow)

* radiation-mediated | (novae, SN breakout,
GRB jets,
GW counterparts)

Zeldovich, Raizer 1966; Weaver 1976
Blandford, Payne 1981; Budnik et al. 2010
Levinson 2012

non-relativistic & relativistic



Gamma-Ray Bursts

2 T~1

I MeV 10 keV

(fluid frame)

sub-photospheric shocks are mediated by radiation;

extremely powerful machines, up to 10°* erg/s

(isotropic equivalent)



GRB photon number "ph

:H: Njon

GRB spectra peak at Epcax = 0.1 — 1 MeV

=10° — 10°

photon supply from the hot central engine is short by ~ 10

—> photons are produced by dissipation in the jet
(which also makes the GRB spectrum nonthermal)
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upstream

Radiation
Mediated
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nonthermal
radiation

(Fermi mechanism)




Radiative MHD from first principles: ‘“Photon In Cell”

Fluid motion: Lagrangian grid

Radiative transfer: individual photons (Monte-Carlo)

goal: self-consistent solution: radiation + shock structure

AB 2017
Lundman, AB, Vurm 2018
Ito et al. 2018



10°

104

1000

dN /dlne

100

10

N I |

|

llllllll |

llllllll

0.01

0.1
e=E/m_c?

1

AB 2017



10°

104

1000

dN /dlne

100

10

N I |

|

llllllll |

llllllll

R

photons
convert to
e+- pairs

v

0.01

0.1
e=E/m_c?

1

AB 2017



upstream e+- creation in

V relativistic RMS:
Ton lph shrinks by ~100
D
downstream

Z+ = n4 /Nion ~ 100 — 300 if ~gpBsh > 1



Magnetized plasma
o~ 0.0l -0.1

collisionless subshock!

downstream

AB 2017; Lundman & AB 2018



v Magnetized plasma

Lon o~ 0.01 —0.1
(Ysh — 1)my, collisionless subshock!
Ye ™
Z:|: MmMe
fast Compton and downstream
synchrotron cooling

AB 2017; Lundman & AB 2018



Synchrotron photon number:

— peaks at low photon energies

— controlled by induced down-scattering limit:

kT,
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Zeldovich, Levich 1968
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Synchrotron photon number:

— peaks at low photon energies

— controlled by induced down-scattering limit:

kT,
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(regulated by e+- creation)



Shock self-organization

e Dresses itself in pair plasma: 74 /Nion ~ 100

=> “carries” the explosion photosphere
(delayed shock breakout)

* Feeds itself with photons that mediate the shock:

Nph /Mion ~ 10° — 10°



Shock self-organization

e Dresses itself in pair plasma: 74 /Nion ~ 100

=> “carries” the explosion photosphere
(delayed shock breakout)

* Feeds itself with photons that mediate the shock:

Nph /Mion ~ 10° — 10°

— self-sufficient machine with 2 dimensionless parameters:
Ush /¢ and medium magnetization 0

— similar to radiative magnetic reconnection (£, o) :
Comptonization => e+- => synchrotron => induced scattering



| II1. Electric discharge I

— works in magnetically dominated, low optical depth systems

Pulsar problem: £2 A

where is the gap?



Pulsars: ab initio experiment

« Start with a non-rotating star and
spin it up. E will be induced

o Particles lifted from the star will
move in the self-consistent
electromagnetic field

« E and B: fixed inside the star,
calculated from Maxwell equations
outside the star

Chen, AB 2014, 2017 « Accelerated particles emit photons
Philippov et al. 2014, 2015

Cerutti et al. 2015, 2016 « High-energy photons convert to e+-



First-principle (collisionless) plasma simulations

Vlasov equation (Boltzmann eq. coupled to Maxwell egs.)

ofs ofF ¢ (E+v><B). o F°

Y " c A(yv)

ot ox ms =0




First-principle (collisionless) plasma simulations

Vlasov equation (Boltzmann eq. coupled to Maxwell egs.)

ofs ofF ¢ (E+v><B). o F°

TV +
A(yv)

ot ox ms =0

Particle-In-Cell method: d_p —e (E + M B) +mg

ﬁtE:chB—éle



aligned rotator

charge density: -blue + orange

Chen, AB (2014, 2017)



ions energy density
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Particle acceleration in the Y-shaped current sheet



Summary: luminous compact objects

Luminosity is powered by dissipation of magnetic or kinetic
energy 1n a compact region

“Dissipation machine” (reconnection layer/shock/discharge)
self-organizes into an essentially non-linear state, feeding itself
with plasma, photons, and generating the observed spectrum

— first-principle problem with few parameters, can be isolated
from “mud wrestling” — MHD weather around compact objects

Ubiquitous, from AGN to GRBs

Best method of study: direct numerical experiment
(Vlasov equation + radiative processes)



