MIXING CONSTRAINTS ON THE PROGENITOR OF SUPERNOVA 1987A

Victor Utrobin ITEP, Moscow

in collaboration with Annop Wongwathanarat (MPA, RIKEN), Hans-Thomas Janka (MPA), and Ewald Müller (MPA)

Workshop on "The Progenitor-Supernova-Remnant Connection Ringberg Castle, Tegernsee, Germany July 24–28, 2017

Core-Collapse Supernova Relative Fractions

Light Curve of Peculiar Type IIP SN 1987A

Open circles (Catchpole et al. 1987, 1988); open triangles (Hamuy et al. 1988).

SN 1987A: Evidence for H and ⁵⁶Ni Mixing

Not flat-topped H α profile on day 498 (Phillips et al. 1990) implies that there is no cavity free of hydrogen at zero velocity.

The [Ni II] 6.64 μ m profile at day 640 gives $v_{\rm FWHM} = 3100$ km s⁻¹ (Colgan et al. 1994).

SN 1987A: Bochum Event and Fast ⁵⁶Ni Clump

Fast ⁵⁶Ni clump: $v_{3D} \approx 4700$ km s⁻¹, $M_{\rm Ni} \sim 10^{-3}$ M_{\odot} (Utrobin et al. 1995).

Modeling of Supernovae: Three Approaches

First approach

Light Curve: Radioactive ⁵⁶Ni and Mixing

SN 1987A originates from BSG; its light curve is powered by radioactive decays.

Presupernova Models for Blue Supergiants

Model	$R_{ m pSN}$	$M_{ m He}^{ m core}$	$M_{ m pSN}$	$M_{ m ZAMS}$	$X_{ m surf}$	$Y_{ m surf}$	$Z_{ m surf}$	Rot.	Ref.
	(R_{\odot})		(M_{\odot})				(10^{-2})		
B15	56.1	4.05	15.02	<u>15.02</u>	0.767	0.230	0.34	No	1
W16	28.8	6.55	15.36	16	0.474	0.521	0.50	Yes	2
W18	46.8	7.40	16.92	18.0	0.480	0.515	0.50	Yes	2
W18r	41.9	6.65	17.09	18	0.542	0.453	0.50	Yes	3
W18x	30.4	5.13	17.56	18	0.713	0.281	0.60	Yes	2
N20	47.9	5.98	16.27	~ 20.0	0.560	0.435	0.50	No	4
W20	64.2	5.79	19.38	20.10	0.738	0.256	0.56	No	5

(1) Woosley et al. (1988), (2) Sukhbold et al. (2016), (3) Woosley (priv. comm.),
(4) Shigeyama & Nomoto (1990), (5) Woosley et al. (1997)

Presupernova Models: Density vs. Interior Mass

Presupernova Models: Density vs. Radius

Pre-SN Models: Mass Fractions vs. Interior Mass

Hydrodynamic Models

Model	$M_{ m NS}$	$M_{ m env}$	$E_{ m exp}$	$M_{ m Ni}^{ m min}$	$M_{ m Ni}^{ m max}$	$M_{ m Ni}$	$v_{ m Ni}^{ m bulk}$	$\langle v angle_{ m Ni}^{ m tail}$
	(M_{\odot})		(B)	$(10^{-2}M_\odot)$		(km s	$(\mathrm{km}\mathrm{s}^{-1})$	
B15-2	1.25	14.21	1.40	3.11	9.36	7.28	3355	3490
W16-1	1.97	13.38	1.13	3.43	8.24	7.32	2117	2222
W18	1.40	15.52	1.36	3.67	12.97	7.26	1395	1472
W18r-2	1.35	15.73	1.27	2.48	9.37	7.65	1088	1101
W18x-1	1.57	15.98	1.22	2.85	9.23	7.64	2247	2361
W18x-2	1.52	16.03	1.38	3.86	12.19	7.54	2436	2837
N20-P	1.46	14.72	1.67	4.16	12.11	7.23	1635	1790
W20	1.50	17.92	1.45	4.10	13.04	7.24	1374	1482

Morphology of ⁵⁶Ni-rich Matter in Model B15-2

Morphology of ⁵⁶Ni-rich Matter in Model W18

More Massive Helium Core, Lower ⁵⁶Ni Velocity

Only model B15-2 yields maximum Ni velocity consistent with the observations!

Hertzsprung-Russell Diagram for SN 1987A Progenitors. Single Star Scenario

Two Possible Solutions of The Problem

- A rapid rotation of Fe core producing more extent of Ni mixing.
- A binary evolution scenario for the BSG Sanduleak $-69^{\circ}202$.

Credit: (ESA/STScI), HST, NASA

The triple-ring system was explained by Morris & Podsiadlowski (2009) in the scenario of a binary merger model.

Hertzsprung-Russell Diagram for SN 1987A Progenitors. Binary Merger Scenario

Bolometric Light Curves

The total ⁵⁶Ni mass is scaled to fit the observed luminosity in the radioactive tail.

Light Curves: Artificial Mixing

The total ⁵⁶Ni mass is scaled to fit the observed luminosity in the radioactive tail.

Summary

- 3D neutrino-driven explosion simulations of SN 1987A are able to synthesize the ⁵⁶Ni mass estimated from the observed luminosity in the radioactive tail.
- The extent of outward ⁵⁶Ni mixing in the framework of the 3D simulations decreases with He-core masses of the corresponding progenitor models.
- In 3D simulations only the model with He-core mass of $4 M_{\odot}$ yields a maximum velocity of the bulk of ⁵⁶Ni consistent with SN 1987A observations.
- In a single star scenario Sk $-69^{\circ}202$ seems to require a progenitor with a $\sim 6 M_{\odot}$ He core, and a $4 M_{\odot}$ He core is not able to explain the color-luminosity properties before collapse.
- Rapid rotation of the iron core might lead to more mixing. Investigations are needed.
- Binary progenitor models with $\sim 4 M_{\odot}$ He cores can account for the colorluminosity properties of Sk $-69^{\circ}202$ (see A. Menon's talk). But do they yield the extent of mixing to explain SN 1987A observations?
- Inward hydrogen mixing leads to minimum velocities of H-rich matter of less than $100 \,\mathrm{km}\,\mathrm{s}^{-1}$ in a good agreement with SN 1987A observations.

Future

• 3D neutrino-driven explosion simulations on the basis of binary merger models of Menon & Heger (2017) for the progenitor of SN 1987A.