Electron Capture Supernovae

from Super-AGB Stars

Ken Nomoto, Shing-Chi Leung, Alexey Tolstov (Kavli IPMU/U. Tokyo)

Final Fates of Stars:

 $M < 8 M_{\odot} \rightarrow Electron-Degenerate Core \rightarrow White Dwarf$ $M = 8 - 10 M_{\odot} \rightarrow Electron-Degenerate ONeMg Core \rightarrow ??$ $M > 10 M_{\odot} \rightarrow Fe Core \rightarrow Collapse (NS or BH)$

Neon "star": off-center Ne ignition

Evolution of the central density & temperature of 8.8 M_o star → Collapse

Electron Capture (EC) in 8-10 M_o Stars

Electron-degenerate O+Ne+Mg Core

- ²⁴Mg(e⁻,v)²⁴Na
 (e⁻,v)²⁴Ne
- ρ >4.0 × 10⁹gcm⁻³
- →collapse

(Nomoto 1984)

Electron Capture on ²⁴Mg & ²⁰Ne

Heating ->

Convection (Ledoux criterion) Semi-Convective mixing ?

Oxygen Deflagration at log $\rho_c \approx 9.95 - 10.0$

Explosion or Collapse ?

Hashimoto, Iwamoto, Nomoto (1993)

Collapse vs. Explosion (1D)

Nomoto & Kondo (1991)

Collapse of ONeMg Cores (>10^{9.90} g cm⁻³)

2D simulations (Leung & Nomoto 2016)

New Initial Model of Super-AGB SN

9M_☉ Star Neutrino Heating → Weak Explosion

Steep Density Gradient $\Rightarrow E_{exp} = 1 \times 10^{50} \text{ erg}$ $M_{ej} = 0.011 M_{\odot}$

→ Super-AGB star's
 H-He-rich Envelope
 (~0.5 - 5M_☉)
 Planetary Nebula-like

Nucleosynthesis Constraints

(Hoffman+ 08, Wanajo+09,11,13)

Kitaura, Janka, & Hillebrandt (2006)

9M_☉ Star

Neutrino Heating → Weak Explosion Yields from EC-SNe (relative to solar)

Evolution of $8 - 12 M_{\odot}$ Stars

Evolution of 8 – 12 M_{\odot} Stars

(Jones+ 2013; Takahashi+2013; Ritossa+99)

Final Fates of Stars:

 $M < 8 M_{\odot} \rightarrow Electron-Degenerate Core \rightarrow White Dwarf$

M = 8 - 8.8 M_☉ → Mass Loss → O+Ne White Dwarf → Electron Capture (EC) Supernova
M ~ 8.8 - 9.5 M_☉
Ne-O flame → does not reach the center formation of a degenerate O+Ne core EC Supernova
M ~ 9.5 - 11 M_☉

Ne-O flame reaches the center formation of an Fe core

 $M > 11 M_{\odot} \rightarrow central Ne-burn \rightarrow Fe Core \rightarrow NS or BH$

Presupernova density profiles

Bolometric light curves (E_{51} =0.15, M(⁵⁶Ni)=0.002 M_o)

The Crab Nebula (SN1054)

- Low Explosion Energy < 1e50 erg
- $M_{ejecta} \sim 3 5 M_{\odot}$
 - Henry & McAlpine (1982)
- Helium-rich: $1.6 < X_{He}/X_H < 8$
 - Henry & McAlpine (1982)
- Oxygen: X_o ~ 0.003

$$(X_O/X_H \sim solar)$$

- Carbon: $0.4 < X_C/X_O < 1.1$
 - Davidson et al. (1982), Pequignot & Dennefeld (1983)
- Nitrogen: moderately oversolar but $X_N/X_C < 1$
 - Davidson et al. (1982)
- Nickel: Ni/Fe > solar
 - Dennefeld & Pequignot (1983), Henry (1984)

Light Curves of ECSNe with CSM Interaction

Moriya, Tominaga, Langer, Nomoto, Blinnikov, Sorokina (2014)

Signatures of Super-AGB Supernovae

Neutron Star: $M_B \sim 1.38 M_{\odot} \rightarrow M_G \sim 1.25 M_{\odot}$

Light Curves of Electron Capture Supernovae :

- plateau with L ~ 10^{42} erg s⁻¹ and t ~ 30–100 days
- faint tail (luminosity drops by ~4 mag)
- photospheric velocity at plateau of 3 $4x10^3$ km s⁻¹
- EC SNe ~ Faint SNe , SN 1054 (Crab)
- Circumstellar Interaction (Smith 2013; Moriya et al. 2014)

Chemical Signatures : Zn - Zr, ⁴⁸Ca, ⁶⁰Fe

New Initial Model of Super-AGB SN

SPRITE (eSPecially Red Intermediate Luminosity Transient Events)

