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Systematic  CCSN  study

O’Connor & Ott ’11,’13; Ugliano+’12; Ertl+’16; Sukhbold+’16

Ø Explosion  properties  (NS/BH  mass,  Eexp,  etc.)  strongly  depend  
on  the  stellar  structure  and  exhibit  large  variety.

Ø They  are  correlated  to  compactness  parameter.

Ø All  of  these  studies  are  based  on  1D  simulations.

Compactness parameter
（O’Connor & Ott 2011）
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Fig. 1. Mass distribution of some selected models at a pre-collapse stage (top panel) and at the time of
core bounce (bottom).

ξM ≡ M/M⊙

R(M)/1000km
. (1)

The previous studies used M = 2.5 M⊙ (O’Connor & Ott 2011; Ugliano et al. 2012) or 1.75 M⊙

(O’Connor & Ott 2013) and estimated ξM at the time of core bounce. On the other hand, the

outer radius of our computational domain (5000 km) is too small to contain 2.5 M⊙ for all

models and even 1.75 M⊙ for some less massive models (see Figure 1). In this paper, we estimate

ξM at M = 2.0 and 2.5 M⊙ (ξM = ξ2.0, ξ2.5) directly from the progenitor models. It should be

noted that our definition of ξ2.5 gives almost the same value as the compactness estimated at

bounce, because the radius R enclosing 2.5 M⊙ is far from the center and the radial velocity

vR there is very small (e.g., for s15.0 model, R = 1.7×109 cm and vR =−6.8×106 cm s−1). By

comparing the top to bottom panel of Figure 1, the position of the outer envelope (>∼ 108 km)

changes very slightly. This is because of the long dynamical time scale there compared to the

short time period before bounce (∼ 200 ms). Actually ξ2.5 of s15.0 model in our definition is

0.149, which is very close to the value (0.150) estimated by O’Connor & Ott (2011) at bounce.
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• Core-­collapse  supernova
– Final  fate  of  massive  stars  （>~10Mo）
– Unclear  mechanism  of  explosion
– Neutrino  heating  mechanism
– Convection,  SASI

0.5

R [km]

e!

e!

1.00.5

Si

M(r) [M ]

e!

e!

e!

M(r) [M ]

e!

e!

e!

e!

e!

Fe, Ni

M(r) [M ]

R   ~ 3000

e!

e!

e!

!e

Ch
M(r) [M ]~ M

Fe, Ni

Si

0.5 1.0

R [km]

Si

R [km]

M(r) [M ]

Fe, Ni

0.5 1.0

Si

R [km]

R [km]

R [km]

Si

1.0M(r) [M ]

Si−burning shell Si−burning shell

Si−burning shellSi−burning shell

!e,µ," ,!e,µ,"

R  ~ 100g

Fe

,µ,"e,!,µ,"e!

#,n

,µ,"e,!,µ,"e!

RFe

RFe

( $>%

$

&)

RFe

$
c o)2%

$
<

formation
shock 

radius of

gR  ~ 100

#,n
#,n,

seed12

9Be,
C,

e!

RFe

position of
shock

formation

RFe

!

Neutrino Trapping

Shock Stagnation and    Heating,

,µ,"e,!,µ,"e!

~ 10

free n, p

!

!e

e

1.3 1.5

R  ~ 50!

p

n

sR  ~ 200

FeR

10

10

10

10

2

3

4

5

R   ~ 10ns

R
31.4

!

He

Ni

#

Si

PNS

r−process?

n, p

O

p
free n,

Fe

Ni

R!

hcM

~ 100

Bounce and Shock Formation

nuclear matter

~ 10

nuclei

(t ~ 0.11s,  

1.3 1.5

R  ~ 50!

Explosion  (t ~ 0.2s)
sR  ~ 200

PNS gain layer
cooling layer

R   ~ 10ns

R
1.4

!

Neutrino Cooling and Neutrino−

PNS

Driven Wind  (t ~ 10s)

n, p

nuclear matter nuclei

Shock Propagation and    Burst

R  ~ 100 kms
R!

(t ~ 0.12s)

heavy nuclei
hcM

$

c(t ~ 0.1s,     ~10¹² g/cm³)(t ~ 0)
Initial Phase of Collapse

Figure 1: Schematic representation of the evolutionary stages from stellar core collapse through the onset of
the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase of the proto-neutron
star (PNS). The panels display the dynamical conditions in their upper half, with arrows representing velocity
vectors. The nuclear composition as well as the nuclear and weak processes are indicated in the lower half
of each panel. The horizontal axis gives mass information. MCh means the Chandrasekhar mass and Mhc

the mass of the subsonically collapsing, homologous inner core. The vertical axis shows corresponding radii,
with RFe, Rs, Rg, Rns, and Rν being the iron core radius, shock radius, gain radius, neutron star radius, and
neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
(ρ0).
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Figure 1: Schematic representation of the evolutionary stages from stellar core collapse through the onset of
the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase of the proto-neutron
star (PNS). The panels display the dynamical conditions in their upper half, with arrows representing velocity
vectors. The nuclear composition as well as the nuclear and weak processes are indicated in the lower half
of each panel. The horizontal axis gives mass information. MCh means the Chandrasekhar mass and Mhc

the mass of the subsonically collapsing, homologous inner core. The vertical axis shows corresponding radii,
with RFe, Rs, Rg, Rns, and Rν being the iron core radius, shock radius, gain radius, neutron star radius, and
neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
(ρ0).
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Figure 1: Schematic representation of the evolutionary stages from stellar core collapse through the onset of
the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase of the proto-neutron
star (PNS). The panels display the dynamical conditions in their upper half, with arrows representing velocity
vectors. The nuclear composition as well as the nuclear and weak processes are indicated in the lower half
of each panel. The horizontal axis gives mass information. MCh means the Chandrasekhar mass and Mhc

the mass of the subsonically collapsing, homologous inner core. The vertical axis shows corresponding radii,
with RFe, Rs, Rg, Rns, and Rν being the iron core radius, shock radius, gain radius, neutron star radius, and
neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
(ρ0).
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• Progenitor  model
– M = 10.8-­75  Mo,  Z = 0-­1 Zo,  w/o  rotation  &  B-­field.
378  models (Woosley,  Heger,  &  Weaver  ’02)

• Numerical  code
– 2D,  n(r)*n(θ)  =  384*128

r = 0-­5000  km,  θ = 0-­π
– Neutrino transport
νe,νe：IDSA  spectral  transport (Liebendoerfer+09)
νx：leakage  scheme
with  20  energy  bins  (<  300  MeV)

・ Numerical  computations  were  carried  out  on  
Cray  XC30  （96  cores  × 2.5  days  /  model）.

• EoS
– LS220  (Lattimer &  Swesty ’91)

Entropy

Density

Systematic features of CCSNe
KN et al., PASJ (2015)

• Nuclear  reactions
– 13α (He-­Ni)  network



Solar-­metallicity (Z=Zo)  models
s10.8 -­ 40.0 （#100）

Zero-­metallicity (Z=0)  models
z11.0 -­ 40.0 （#30）

Metal-­poor  (Z=10-­4Zo)  models
u11.0  -­ 22.8  /  u23.0  -­ 46.8  /  u47.0  -­ 58.8

（#240）

*All  progenitors  are  from  Woosley, Heger & Weaver (2002)



Time  evolution  of  neutrino  luminosity

νe νe

ü Showing  101  models  with  solar  metallicity.
The  other  models  with  lower  metallicity have  a  similar  trend  (not  shown  here).

ü The  difference  of  Lν is  more  than  double.
2-­6 ×1052 erg/s  @  t  =  200  ms.

※ smoothed over Δt =  20  ms.
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Time  evolution  of  neutrino  luminosity
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Fig. 1. Mass distribution of some selected models at a pre-collapse stage (top panel) and at the time of
core bounce (bottom).

ξM ≡ M/M⊙

R(M)/1000km
. (1)

The previous studies used M = 2.5 M⊙ (O’Connor & Ott 2011; Ugliano et al. 2012) or 1.75 M⊙

(O’Connor & Ott 2013) and estimated ξM at the time of core bounce. On the other hand, the

outer radius of our computational domain (5000 km) is too small to contain 2.5 M⊙ for all

models and even 1.75 M⊙ for some less massive models (see Figure 1). In this paper, we estimate

ξM at M = 2.0 and 2.5 M⊙ (ξM = ξ2.0, ξ2.5) directly from the progenitor models. It should be

noted that our definition of ξ2.5 gives almost the same value as the compactness estimated at

bounce, because the radius R enclosing 2.5 M⊙ is far from the center and the radial velocity

vR there is very small (e.g., for s15.0 model, R = 1.7×109 cm and vR =−6.8×106 cm s−1). By

comparing the top to bottom panel of Figure 1, the position of the outer envelope (>∼ 108 km)

changes very slightly. This is because of the long dynamical time scale there compared to the

short time period before bounce (∼ 200 ms). Actually ξ2.5 of s15.0 model in our definition is

0.149, which is very close to the value (0.150) estimated by O’Connor & Ott (2011) at bounce.
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ü The  compactness-­colored  lines  show  a  
monotonic  trend.



CCSN  properties v.s.  ZAMS  mass
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CCSN  properties v.s.  compactness
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CCSN  properties v.s.  compactness
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Strong  shock  heating  produces

ejecta rich  in  nickel.

⑥

Compilation  of  CCSNe Simulations
for  101  Solar-­metallicity Progenitors

Compact  progenitor  suffers  from  
high  mass  accretion  rate,

①

so  that  it  takes  longer  time  
to  revive  a  stalled  shock

②

..  and  leaves  a  massive  remnants
at  the  center.

③
Accreted  matter  releases  grav.  energy
which  is  carried  away  by  neutrinos.

④

High  neutrino  luminosity  results  in
energetic  explosion.

⑤

@t=t400 @t=tfin.
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Figure 6. The progenitor detections are marked with error bars (data from Table 1 and the limits
are marked with arrows (data from Table 2). The lines are cumulative IMFs with different minimum
and maximum masses.

star-forming regions. Williams et al. (2014) also suggest that
their results are compatible with progenitors all coming from
masses M < 20 M⊙ although the uncertainties do not rule
out the possibility of no upper-mass cut-off.

3.3. Possible explanations

The reasons for these missing high-mass progenitors are dis-
cussed as follows

3.3.1. Dust formation and circumstellar extinction
As discussed in Section 2.1.3, the extinction toward the pro-
genitors is often estimated from the extinction toward the SN
itself, or the nearby stellar population. The former estimates

may not be directly applicable since the circumstellar dust
around the progenitor stars can be destroyed in explosions—
as in the case of SN2012aw and SN2008S.

Walmswell & Eldridge (2012) calculated the dust that
could be produced in red supergiant winds and the extra ex-
tinction that this would produce. The idea is well motivated
and valid, but Kochanek et al. (2012) showed that treating
CSM extinction with a slab of ISM material is not physically
consistent. As shown in Kochanek et al. (2012), the pro-
genitor of SN2012aw was thought to be quite a high-mass
star but correct treatment of radiative transfer in a spheri-
cal dust shell reduces the progenitor luminosity limit while
comfortably fitting the optical, NIR, and MIR detections and
limits. The major concern for this sample is that the objects

PASA, 32, e016 (2015)
doi:10.1017/pasa.2015.17
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RSG  problem  &  SN  rate  problem
Horiuchi+’14; Sukhbold+’16

RSG  problem（Smartt’09,’15）

Critical  ξ2.5 〜 2.0
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Cosmic SNR measurements

Figure 1. Comoving SNR (all types of luminous core collapses including Type II
and Type Ibc) as a function of redshift. The SNR predicted from the cosmic SFR
fit and its supporting data (Hopkins & Beacom 2006), as well as that predicted
from the mean of the local SFR measurements, are plotted and labeled. The fit to
the measured cosmic SNR, with a fixed slope of (1+z)3.4 taken from the cosmic
SFR, is shown with the uncertainty band from the LOSS measurement. The
predicted and measured cosmic SNRs are consistently discrepant by a factor of
∼2: the supernova rate problem. However, rates from SN catalogs in the very
local volume do not show such a large discrepancy (see Figure 3).
(A color version of this figure is available in the online journal.)

SNRs (Cappellaro et al. 1999; Dahlen et al. 2004; Cappellaro
et al. 2005) were somewhat lower than those predicted from
the SFR. Similar conclusions were reached by Mannucci et al.
(2007) and Botticella et al. (2008).

In recent years, measurements of the cosmic SFR and
cosmic SNR have rapidly improved. The cosmic SFR has
been measured using multiple indicators by many competing
groups. The accuracy and precision of the cosmic SFR has
been documented (e.g., Hopkins & Beacom 2006) and are
supported by recent data (e.g., Pascale et al. 2009; Rujopakarn
et al. 2010; Ly et al. 2011; Bothwell et al. 2011). The Lick
Observatory Supernova Search (LOSS) has recently published
the best measurement of the cosmic SNR at low redshifts, using
CC SNe collected over many years of systematically surveying
galaxies within ∼200 Mpc (Leaman et al. 2011; Li et al.
2011a, 2011b; Maoz et al. 2011). The Supernova Legacy Survey
(SNLS) has published the most precise SNR measurement at
higher redshifts, using a large sample of CC SNe collected in
their extensive rolling search of four deep fields (Bazin et al.
2009).

Based on the latest data, it has become clear that the measured
cosmic SFR and the measured cosmic SNR both increase by
approximately an order of magnitude between redshift 0 and
1, confirming our expectation that the progenitors of CC SNe
are short-lived massive stars (e.g., Bazin et al. 2009; Li et al.
2011a). On the other hand, the comparison of the normalizations
of the latest SFR and SNR data has been left for future work. We
perform this here for the first time. As illustrated in Figure 1,
the SNR predicted from the cosmic SFR is a factor of ∼2 larger
than the cosmic SNR measured by SN surveys; we term this
normalization discrepancy the “supernova rate problem.” Both
the predicted and measured SNRs are of optically luminous

CC SNe, so the two can be directly compared. The lines in
Figure 1 are fits to the SFR and SNR data, respectively.8 The
discrepancy persists over all redshifts where SNR measurements
are available.9

The nominal uncertainties on the fits (shaded bands) are
smaller than the normalization discrepancy, and the significance
of the discrepancy is at the ∼2σ level. At high redshift, where the
uncertainties of the SNR measurements are largest, the statistical
significance is weaker. However, it is remarkable how well
the cosmic SNR measurements adhere to the expected cosmic
trend—much better than their uncertainties would suggest.
Indeed, the measurements of Dahlen et al. (2004) have been
supported by recent unpublished results and with reduced
uncertainties (Dahlen et al. 2010). We therefore consider the
fits to be a good representation, i.e., the supernova rate problem
persists over a wide redshift range. We systematically examine
resolutions to the supernova rate problem, exploring whether
the cosmic SNR predicted from the cosmic SFR is too large, or
whether the measurements underestimate the true cosmic SNR,
or a combination of both.

In Section 2, we describe the predicted and measured cosmic
SNRs in detail and substantiate the discrepancy. In Section 3, we
discuss possible causes. In Section 4, we discuss our results and
cautions. We summarize and discuss implications in Section 5.
Throughout, we adopt the standard ΛCDM cosmology with
Ωm = 0.3, ΩΛ = 0.7, and H0 = 73 km s−1 Mpc−1.

2. NORMALIZATION OF THE COSMIC SNR

The cosmic SNR is calculated from the cosmic SFR using
knowledge of the efficiency of forming CC SNe. The most
recent SFR is traced by the most massive stars that have the
shortest lifetimes. The primary indicators of massive stars—Hα,
UV, FIR, and radio—are routinely used, with dust corrections
where necessary, to study the populations of massive stars.
However, since the total SFR is dominated by stars with
smaller masses, the SFR derived from massive stars must be
scaled upward according to the initial mass function (IMF); for
example, for a given massive stellar population, an IMF that
is more steeply falling with mass will yield a larger total SFR
compared to a shallower IMF. The scaling is done with the use
of calibration factors derived from stellar population synthesis
codes that calculate the radiative output from a population of
stars following an assumed IMF (see, e.g., Kennicutt 1998).

We adopt the dust-corrected SFR compilation of Hopkins &
Beacom (2006). Their data are well fit by a smoothed broken
power law of the form (Yüksel et al. 2008)

ρ̇∗(z) = ρ̇0

[

(1 + z)aη +
(

1 + z

B

)bη

+
(

1 + z

C

)cη
]1/η

, (1)

where B = (1 + z1)1−a/b, C = (1 + z1)(b−a)/c(1 + z2)1−b/c. We
adopt ρ̇0 = 0.016 h73 M⊙ Mpc−3 yr−1 for the cosmic SFR at
z = 0, as well as the parameterization a = 3.4, b = −0.3,
c = −3.5, z1 = 1, z2 = 4, and η = −10. These choices are
applicable for the Salpeter A IMF, which is a modified Salpeter
IMF with a turnover below 1 M⊙ (Baldry & Glazebrook 2003).
The scaling from a Salpeter IMF is ≈0.77. The 1σ uncertainty on

8 Technically, the SNR line shown is not a fit, but is a conservative estimate
based on the SNR measurement of LOSS; see Section 2.
9 However, in the local !25 Mpc volume, the SNR derived from SN catalogs
does not show such a large discrepancy, supporting earlier claims that the true
cosmic SNR is as large as predicted (e.g., Horiuchi et al. 2009; Beacom 2010).
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We  have  demonstrated  2D  ab initio  CCSN  simulations
-­ taking  account  of  neutrino  transport  and  hydro.  instabilities
-­ for  ~400  progenitors  covering  M  =  10.8  -­ 75  Mo  and  Z  =  0  -­ Zo.

CCSN  properties  are  well  characterized  by  the  compactness  parameter
-­ MPNS,  Lne (&  Lne),  Eexp,  MNi (,  GW)

-­

Next  step:
-­ long-­time  (>  1s)  evolution  to  determine  final  explosion  energy

Short summary

– 2 –

non-isoenergetic scattering on ..

- gravity

- advection

The shock revival and its expansion are, if re-
alized, followed for 1.5 s or until the time when the
shock has reached at the outer boundary at 5,000 km.
During the long-time simulations of the SN dynamics,
we follow approximately the explosive nucleosynthe-
sis and the energy feedback into hydrodynamics as
described in Nakamura+’13 (XXREFXX) by soling
a 13 α-nuclei network including 4He,..,56Ni.

We adopt 100 progenitor stars (Woosley+)
(XXREFXX). The models are given in 0.2 M⊙ steps
between 10.8 M⊙ and 28.2 M⊙ and further up to
40 M⊙ in 1.0 M⊙ steps. We also include a very mas-
sive progenitor with 75.0 M⊙. The structure of these
stars, such as density profiles and the pre-collapse
masses are described in Ugliano+’12 (XXREFXX). It
should be noted that mass loss during main-sequence
and red-giant phases make the M ≤ 33 M⊙ progeni-
tors compact Wolf-Rayet stars with the radius ! 1011

cm.

3. RESULTS

We introduce a compactness parameter ξ which
is define as in Equation (10) of O’Connor & Ott

(XXREFXX) by the ration of mass M = 1.5 M⊙
and radius R(M) that encloses this mass:

ξ ≡ M/ M⊙
R(M)/1000km

, (1)

where we take M = 1.5 M⊙ (ξ = ξ1.5) and estimate
ξ1.5 at the moment of core bounce (XXCHECKXX)
because it is the maximum mass all the models in-
volve within our simulation range. The compactness
parameter ξ1.5 is displayed in Figure 1 as a function
of the zero-age main-sequence masses.

Figure 2 displays a snapshot of entropy distribu-
tion at tpb = 400 ms for selected 48 models. Some
less massive models, for example s11.2 and s11.4 on
the top line, have already carried their shock fronts
close to the outer boundary. On the contrary, a shock
of s24.0 still stalls around 200 km and ...

Figure 3 presents time evolution of average shock
radii for 6 models with ZAMS masses between 19.2
and 24.0 M⊙. The shock radii of two models, s20.0
and s22.0, evolve quickly compared to the other mod-
els, which clearly reflects the fact that these two pro-
genitors are less compact in this mass range (Figure
1).

- the reason why small-xi models explode earlier.

- small xi = small accretion rate

- one more figure (time-Mdot and ¡Rsh¿ for a few
models) ?
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Long-­term  2D  CCSN  simulation

Ø B. Mueller ’15
M  = 11.0 -­ 11.6 Mo
2D,  n(r)*n(θ)  =  550*128

Explosion  energy  is
converged
at  small  value

(<~0.2  foe).

R  <  100,000  km, t  <  6−11  s

290 B. Müller

Figure 2. Shock propagation and diagnostic explosion energy Eexpl for the
11.2 M⊙ progenitor in 2D and 3D. The top panel shows the maximum,
minimum (solid), and average (dashed) shock radius for model s11.2_2Da
(black), s11.2_2Db (blue), and s11.2_3D (red). The middle and bottom
panels show the diagnostic explosion energy Eexpl and its time derivative
dEexpl/dt.

Doppler shift and aberration. The neutrino rates include emission,
absorption, and elastic scattering by nuclei and free nucleons [along
the lines of Bruenn (1985)] as well as an effective one-particle rate
for nucleon–nucleon bremsstrahlung and an approximate treatment
of the energy exchange in neutrino–nucleon scattering reactions.
Comparisons of the FMT scheme with the more sophisticated rel-
ativistic neutrino transport solver VERTEX (Rampp & Janka 2002;
Müller et al. 2010) showed excellent qualitative and good quantita-
tive agreement. For more details, we refer the reader to Müller &
Janka (2015).

In order to further alleviate the time-step constraint, the inner-
most part of the computational domain (where densities exceed
∼5 × 1011 g cm−3) is calculated in spherical symmetry using a con-
servative implementation of mixing-length theory for proto-neutron
star convection, a procedure that has been used in the context of su-
pernova simulations before (e.g. Wilson & Mayle 1988; Hüdepohl
2014). The transition density is adjusted such that it lies inside the
convectively stable cooling layer.

In the high-density regime, we use the equation of state (EoS) of
Lattimer & Swesty (1991) with a bulk incompressibility modulus
of nuclear matter of K = 220 MeV. At low densities, we employ an
EoS accounting for photons, electrons, and positrons of arbitrary
degeneracy, an ideal gas contribution from baryons (nucleons, pro-
tons, α-particles, and 14 other nuclear species). Nuclear reactions
are treated using ‘flashing’ as described in Rampp & Janka (2002).

Figure 3. Shock propagation and diagnostic explosion energy Eexpl for the
different progenitors in 2D. The top and middle panels show the maximum
and average shock radius, respectively. The bottom panel shows the diag-
nostics explosion energy Eexpl as a function of time (solid lines). Dashed
lines show the time evolution Eexpl − Eov, i.e. the diagnostic energy cor-
rected for the binding energy (overburden) Eov of the material ahead of the
shock. Red, black, blue, light brown, and green curves are used for models
s11.0_2D, s11.2_2Da, s11.2_2Db, s11.4_2D, and s11.6_2D.

3 OVERV IEW O F SIMULATION R ESULTS

In all our simulations, runaway shock expansion sets in when the
Si/SiO interface reaches the shock and the mass accretion rate drops
rapidly. Figs 2 (all 2D/3D 11.2 M⊙ models) and 3 (long-time evo-
lution of all 2D models) provide an overview over the propagation
of the shock and the growth of the explosion energies for the dif-
ferent models; they show the maximum, minimum (only Fig. 2),
and angled-averaged shock radius, as well as the ‘diagnostic ex-
plosion energy’ Eexpl, which we define as the total net energy (i.e.
gravitational+internal+kinetic energy) of all the material that is
nominally unbound and is moving outwards with positive radial ve-
locity at a given time (cp. Müller et al. 2012a; Bruenn et al. 2014).
The nucleon rest masses are not included in the internal energy, i.e.
nucleon recombination only contributes to the diagnostic energy
once it actually takes places. Fig. 2 also shows the time derivative
of the diagnostic energy. Key results of the simulations, including
the diagnostics energy and the baryonic remnant mass at the end of
the simulations as well as estimates for the final remnant mass (see
Section 3.3 below), are given in Table 1.

3.1 Differences between 2D and 3D during the first second

For the 11.2 M⊙ progenitor, the first second after bounce is shown in
detail in Fig. 2 both in 2D and 3D. In addition, Figs 4 and 5 illustrate

MNRAS 453, 287–310 (2015)
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• Progenitor  model
– M  =  11.2, 17, 27  Mo,  Z  =  Zo,  w/o  rotation  &  B-­field
(Woosley,  Heger,  &  Weaver  ’02)

• Numerical  code
– 2D,  n(r)*n(θ)  =  1008*128

r=0-­100,000  km,  θ=0-­π
– Neutrino  transport
νe,νe：IDSA  spectral  transport (Liebendoerfer+09)
νx：leakage  scheme
with  20  energy  bins  (<  300  MeV)

・ Numerical  computations  were  carried  out  on  
Cray  XC30  （576  cores  × 20  days  /  model）

• EoS
– LS220  (Lattimer &  Swesty ’91)  +  Si  gas

Entropy

Density

Long-­term CCSN simulation

• Nuclear  reactions
– 13α (He-­Ni)  network
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ü All  models  exhibit  shock  revival.
The  shock  reaches  at  r  =  100,000  km  
(nearly  the  bottom  of  He  layer)  
within  t  =  7-­8  s.

ü s11.2 model
shows  almost  converged  Eexp &  MPNS.
Eexp =  0.19  foe,  MPNS =  1.36  Mo

ü s17.0 model
shows  still  growing  Eexp &  MPNS at  t  ~  7s.
Eexp = =  1.23  foe,  MPNS =  1.85  Mo

ü s27.0 model
is  similar  to  s17.0  models,  but   the  PNS  
mass  reaches  the  limit  （MPNS =  2.13  Mo）
predicted  by  1D  GR  simulation.
(O’Connor & Ott ’11;; KN+’15)

Results



Mass  accretion  onto  the  central  PNS

s11.2 s17.0 s27.0

ü In  s17.0 & s27.0  models,  a  cold  downflow keeps  hitting  the  PNS.
→  The  PNS  mass  increases and  ν luminosity  keeps  high,
→  resulting  in  continuous  growth  of  the  explosion  energy.



3D CCSN Simulations
Melson+'15Hanke+'13 Roberts+'16

2 T. Takiwaki et al.

in Section 2. We discuss our results in Section 3, followed by
a summary in Section 4

2 NUMERICAL SETUP AND PROGENITOR

MODEL

Initial conditions are taken from the 11.2 and 27.0 M⊙ pre-
supernova progenitors of Woosley et al. (2002). The mod-
els, which have been used in Takiwaki et al. (2012, 2014);
Hanke et al. (2013); Müller (2015), are useful to clearly ex-
plore the impacts of rotation The initially constant angular
frequency of Ω0 = 1 or 2 rad/s is imposed inside the iron core
with a cut-off (∝ r−2) outside. Although these angular fre-
quencies are close to the high-end of those from most recent
stellar evolution models (e.g., Heger et al. (2000, 2005), see
also discussions in Ott et al. (2006)), we assume such rapid
rotation to clearly see the impacts of rotation in this study.
The model name is labeled as ”s11.2-R1.0-3D”, which repre-
sents the 11.2 M⊙ model with Ω0 = 1 rad/s that is computed
in 3D simulation.

Our numerical method is based on that in
Takiwaki et al. (2014) except several points. We use
the equation of state (EOS) by Lattimer & Douglas Swesty
(1991) (incompressibility K = 220 MeV). Our code
employs a high-resolution shock capturing scheme with
an approximate Riemann solver of Einfeldt (1988) (see
Nakamura et al. (2015) for more details). For the calculation
presented here, self-gravity is computed by a Newtonian
monopole approximation1. Our fiducial 3D models are
computed on a spherical polar grid with a resolution of
nr ×nθ ×nφ = 384× 64× 128, in which non-equally spatial
radial zones covers from the center to an outer boundary
of 5000 km.2 Our spatial grid has a finest mesh spacing
drmin = 0.5 km at the center and dr/r is better than 2% at
r ≥ 100 km. For a numerical resolution test, we compute
high-resolution runs with nr × nθ × nφ = 384× 128× 256.

In total, we have computed nine 3D models, which con-
sists of six models with the fiducial resolution (i.e., the
two progenitors with Ω0 = 0, 1, 2 rad/s) and three high-
resolution runs for the 11.2 M⊙ model. By using the fastest
K computer in Japan, it typically took 2 months (equiva-
lently ∼ 15 Pflops-day computational resources) for each of
the high-resolution runs.

3 RESULTS

Figure 1 summarizes the blast morphology for the 11.2M⊙

(left panels) and 27.0M⊙ star (right panels), which are help-
ful to compare the hydrodynamics features between the non-
rotating (top) and rapidly rotating (bottom) models, respec-
tively.

In the non-rotating models, s11.2-R0.0-3D (top left)

1 Our 3D rotating models with an improved multipole approx-
imation of gravity (e.g., Couch et al. (2013)) explode more en-
ergetically than those only with the monopole contribution (see,
more details in Takiwaki et al. in preparation).
2 This choice of the outer boundary position was shown to be in-
significant especially in the simulation timescale (! 300 ms post-
bounce) in this work (see section 2.3 in Nakamura et al. (2015)).

Figure 1. 3D iso-entropy surfaces showing the blast morphology
for the non-rotating (top panels) and rapidly rotating (bottom
panels) models of the 11.2 (left) and 27.0M⊙ star (right), respec-
tively. For each panel, the time is given at the top right corner,
which is measured relative to core bounce (t ≡ 0). The rotational
axis is shown in the left bottom panel (z-axis) and the viewing
angle of each plot is all the same.

shows typical features of neutrino-driven convection in the
postshock regions. The rising plumes grow stronger and
larger in angular size from the initial small mushroom-like
Rayleigh-Taylor fingers.

In models with rapid rotation, a clear oblate explosion
is obtained for model s27.0-R2.0-3D (bottom right), in which
the revived shock expands more strongly in the equatorial
plane. This feature is only weakly visible for model s11.2-
R2.0-3D (bottom left) due to the early shock revival (see also,
top panel of Figure 2). Later we present detailed analysis of
the origin of the oblate explosion and point out a new aspect
of rapid rotation for assisting explosions.

Before going into detail, let us shortly summarize the
evolution of the shock and (diagnostic) explosion energy of
all the computed models in Figure 2. The top panels are for
the 11.2 M⊙ series with different Ω0 and different numerical
resolution (with the high resolution being ended with H).
The average shock radii of the standard resolution models
(solid line) and high resolution models (dashed line) do not
deviate from each other. It is important to present that our
results do not strongly depend on the grid size3.

The bottom panel of Figure 2 shows that all the vari-
ations of the non-rotating 27M⊙ progenitor star do not
trend toward an explosion very clearly during the simula-
tion, whereas the rapidly rotating model does so (red solid
line) with the diagnostic energy much bigger than those

3 Apparently our resolution is not sufficient for reproducing re-
alistic viscosity (Couch & Ott 2015)). The convergence may be
partly due to the diffusive feature of the HLLE scheme employed
in this work (e.g., Radice et al. (2015)).

MNRAS 000, 1–5 (2016)

Takiwaki+’16 Kuroda+’16



very small cell width L along the pole

→ very small time step Δt.

1) Hydrodynamics is solved in fine grid.

2) Then some meshes are coarsened 

(averaged over the “large” cell).

3) Δt is determined in the “large” cell.

Preliminary result from test calculations.

Mesh  coarsening  scheme



s11.2  (WHW02)
LS220  +  Si  gas
2-­flavor  IDSA  +  leakage
Newtonian

(preliminary)
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Summary

Ø 1. Systematic  CCSN  study  based  on  2D  simulations.  
KN+’15 PASJ, 67 (6) 107
SN  properties（neutrino  luminosity,  PNS  mass,  etc.）are  
well  characterized  by  compactness  parameter  ξ.

But  explosion  energy  is  still  growing.

Ø 2: Long-­term  2D  simulations.
KN+'16 MNRAS, 461 (3) 3296
For  three  progenitors  with  small/middle/large  ξ.

→  Explosion  energy  reaches  1051erg,  but  not  converged.  
2D seems  to  be  problematic.

R<5,000km, t<~1s.

R<100,000km, t~10s.

Ø 3. Toward  a  long-­term  3D  CCSN  simulation.
KN+, in prep.
With  mesh  coarsening  scheme.

→ s11.2  progenitor  shows  larger  explosion  energy.


