Binary merger progenitor- explosion connection Lessons from SN 1987A

Athira Menon, final year PhD student, Monash University Alexander Heger, Monash University Victor Utrobin, ITEP

July 27th, 2017, Ringberg workshop

The progenitor, Sanduleak 69⁰202

Progenitor was a hot blue supergiant (BSG) ($T_{eff} = 15,000$ K – 18,000K)

Unique dome-shaped light curve despite being a Type-II H-rich supernova Rings ejected by the BSG progenitor--Inner ring ejected at least 20,000 years before explosion (Burrows+ 1995, Sugerman+ 2005)

Rings **enriched in** helium, nitrogen (N) over carbon (C) and oxygen (O) (Lundqvist & Fransson 1996); N/C = 5 ± 2 , N/O = 1.1 ± 0.4

The 30 year story of progenitor evolution of SN 1987A

Single Stars

- Current standard models:
 Eg., Arnett 1987, Woosley et al.
 1988, Shigeyama & Nomoto 1990
- Detailed explosion studies
- Ad hoc physics to obtain a blue supergiant pre-SN (rotation, massloss, convective overshooting etc.,)
- Cannot explain triple-ring nebula ejection

Binary Stars

- Binary scenario and merger tracks: (Podsiadlowski, Joss, Hsu 1992; Podsiadlowski 1992)
- Physics in check, especially for triple-ring nebula (Morris & Podsiadlowski 2007, 2009)
- Merger hydrodynamics (Ivanova+ 2002, 2003)
- No pre-SN models from binary mergers that match all progenitor observations
- No explosion studies

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **469**, 4649–4664 (2017) Advance Access publication 2017 April 5 Advancing Advancing Advancing and Geographics

doi:10.1093/mnras/stx818

The quest for blue supergiants: binary merger models for the evolution of the progenitor of SN 1987A

Athira Menon^{1*} and Alexander Heger^{1,2,3*}

¹Monash Centre for Astrophysics (MoCA) and School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia ²School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA ³Centre for Nuclear Astrophysics, Shanghai Jiao Tong University, Shanghai 200240, China

Accepted 2017 March 29. Received 2017 February 9; in original form 2016 November 6

- First systematic stellar-evolution study of Type II progenitors from 84 binary-merger models
 - Which of these models match the progenitor observations of SN 1987A?
 - What conditions can lead to Type II blue supergiant progenitors?
 - How do the structures of binary merger models compare with single star models?

Distribution in HR diagram of all 84 merger pre-SN models

- Only chose initial parameters
- No fine tuning during evolution; pre-SN models come naturally from simulations
 - SN 1987A progenitors
- HRD position
 N/C, N/O values in surface
 Lifetime >15,000 yr

Density profiles comparison of SN 1987A pre-SN models

Density profiles comparison of SN 1987A pre-SN models

(Ms)

mass

Chemical composition comparison

Binary merger model $16 + 2 \mathbf{M}_{\odot}$

Binary merger scenario Podsiadlowski and Ivanova papers

Blue Supergiant pre-SN ?

Merger: Order of 100 years

He core is dredged up \rightarrow He core shrinks after merger Seen in 3D simulations of Ivanova (2002, 2003)

Merger

 M_1 =16 M_{\odot} ,rotating at v/vc= 0.30 M_2 =7 M_{\odot} fc=17 % → mixing boundary (m_b) = 3.7 M_{\odot}

(No common envelope physics included)

Fig 1. from Menon & Heger, MNRAS, 2017

Figure 1. Top panel, stage B in Fig. 4: Composition of the RSG model from a primary of $M_1 = 16 \text{ M}_{\odot}$ consisting of a He core of $M_{\text{Hec}, 1} = 4.92 \text{ M}_{\odot}$ just prior to the merger. Middle panel, stage C in Fig. 4: Composition at the end of the merger with $M_2 = 7 \text{ M}_{\odot}$. The boundary of mixing m_b (dotted vertical line) is set for $f_c = 16.6\%$. At the end of the merger, the star has a smaller He core of mass 3.41 M_{\odot} . Bottom panel, stage D in Fig. 4: Composition of the pre-SN model. The surface composition of the star does not change much from the one at the end of the merger.

HR diagram

Methodology

1. Choose a combination of three initial parameters:

-primary mass (M_1)

-secondary mass (M_2)

-fraction of He core-dredged up (f_c): mixing boundary, He core mass after merger

KEPLER

(Woosley, Heger & Weaver 2002; Heger, Woosley & Spruit 2005)2. Merge primary and secondary stars (no common envelope physics included)

3. Follow evolution until pre-SN stage (i.e. just before iron-core collapse)

4. Check if pre-SN model matches observational criteria of Sk-69⁰ 202

CRAB (Utrobin 2004; Utrobin 2007) 5. Explode these models (Victor Utrobin)

LMC composition, Z=0.0055

What causes pre-supernova models to become blue?

And how do their explosions look? (Light curve models by Victor Utrobin using CRAB)

Fraction of He core dredged up (fc)

- Relation between M_{core}/M_{env} and T_{eff} is not monotonic
- For a given M₁, M₂, decreasing fc decreases T_{eff}
- Accretion alone, without core dredge up, makes RSGs from mergers

Fraction of He core dredged up (fc)

Dredge-up from CO core will decrease N/C and N/O

$$\leftarrow$$
 Increasing M_{core}/M_{env}

Secondary Mass (M₂)

Fixed $M_{\rm 1}$, fc, monotonic increase in $T_{\rm eff}$ and L, with increasing $M_{\rm 2}$

Light curves by changing He core fraction (fc)

Model	R _{pre-SN} (R _⊙)	M _{He-core} (M _☉)	M _{pre-SN} (M _☉)
16-7a	29.4	3.8	22
16-7b	36.8	3.4	22
16-7d	60.0	3.0	22

Initial models

Explosion parameters $E_exp/M_ejecta = 1.5x10^{51}erg/18M_{\odot}$ Mixing width = 2 M_{\odot} Nickel mixing velocity = 3000 km/s M_{Ni} in ejecta = 0.073 M_{\odot}

Light curves comparison between binary mergers and single stars

Light curves comparison between binary mergers and single stars

Model	R_{pre-SN} (R _O)	M _{He-core} (M _☉)	M _{pre-SN} (M _☉)
B15	56.1	4.0	15.0
N20	47.9	6.0	16.3
W18	46.8	7.4	16.9
W 20	64.2	5.8	19.4

Conclusions

Stellar evolution

- Blue supergiants are highly favoured via mergers, in the parameter space studied
- Six models match the progenitor observations of SN 1987A
- Sensitive to fraction of He
 core dredged up and
 secondary mass accreted
- More massive and smaller He core masses compared to single star models

Supernova explosions

- Light curves fit better with merger models
- Important consequences for 3D simulations (Janka, Utrobin, et al., work in progress)
- What are the other consequences/ implications for supernova studies?