The development of neutrino-driven convection in core-collapse supernovae: 2D vs 3D

Rémi Kazeroni (CEA/MPA)

B. Krueger (CEA/LANL), J. Guilet (MPA/CEA), T. Foglizzo (CEA)

Ringberg workshop

July 25, 2017

Introduction

• Explosions are often harder to achieve in 3D compared to 2D.

(Hanke+ 2013, Takiwaki+ 2014, Melson+ 2015b, Lentz+ 2015, ...)

• Various reasons proposed to explain the discrepancies: buoyant bubble properties, turbulent energy cascade, ...

(Hanke+ 2012, Murphy+ 2013, Couch 2013, Couch & O'tt 2015, Abdikamalov+ 2015, ...)

350 ms

750

Shock radius [km]

2

• Differences in the accretion and outflow dynamics may foster 3D explosions.

(Melson+ 2015a, Müller 2015)

Introduction

Nonlinear regime

 May be triggered by a large amplitude perturbation even if linearly stable (Scheck+ 2008, Fernández+ 2014)

Linear regime

- \blacksquare neutrino heating in the gain region
- \blacksquare spatial scale: $l \sim 5-6$
- \blacksquare may be stabilized by advection (Foglizzo+ 2006)

$$\chi \equiv \int_{\text{gain}} \frac{\text{Im}\left(\omega_{\text{BV}}\right)}{v_r} dr \simeq \frac{t_{\text{adv}}}{t_{\text{buoy}}}$$

linearly unstable if: $\chi > \chi_{crit}$

$$\frac{\Delta\rho}{\rho} \equiv \left(\frac{\langle |v_r|\rangle}{\langle g\rangle t_{\rm adv}}\right)_{\rm gain} \sim \mathcal{O}\left(1\%\right)$$

 Is a perturbation with a large amplitude sufficient to trigger self-sustained convection?

• Is 2D necessarily more favourable to CCSNe than 3D?

Idealized model of the gain layer

entropy contrast $\delta S = S - \langle S(z) \rangle$

Linear instability threshold

$$\chi_{\rm crit} = 2$$

Nonlinear threshold

 \blacksquare A buoyant bubble does not necessarily lead to the development of turbulent convection.

 $(t_{adv} \sim 20 ms)$

Parametric simulations

 Is a perturbation with a large amplitude sufficient to trigger self-sustained convection?

• Is 2D necessarily more favourable to CCSNe than 3D?

$$\begin{array}{c} \textbf{2D} \\ \chi = 5 \\ \Delta \rho / \rho = 0.1 ~\% \end{array}$$

$$\begin{array}{c} \textbf{3D} \\ \chi = 5 \\ \Delta \rho / \rho = 0.1 ~\% \end{array}$$

11

What are the differences between 2D & 3D?

In which case does a buoyant bubble rise faster against advection?

In 2D or in 3D?

 \square Faster rising buoyant bubbles in 3D.

What are the differences between 2D & 3D?

Turbulent mixing

Neutrino-driven convection

Greater flow deceleration due to small scale turbulent mixing in 3D.

 \blacksquare Residency time in the gain layer reduced due to large scale vortices in 2D.

Dimensionality and resolution

Heating efficiency

mean entropy in the gain layer

vertical cells in the gain layer		
ULR	32	
LR	64	
MR	128	
HR	256	
VHR	512	

Linear instability regime

- Heating increases in a runaway process **only** in 3D.
- Earlier rise of buoyant bubbles in low resolution cases.

Dimensionality and resolution

Nonlinear instability regime

vertical cells in the gain layer		
ULR	32	
LR	64	
MR	128	
HR	256	
VHR	512	

Nonlinear instability regime

- Convection triggered by large amplitude perturbations is more vigorous with increasing dimensionality and resolution.
- The decay timescale increases with dimensionality and resolution.

Conclusion

- An idealized model is employed to challenge our understanding of the dynamics in the gain region.
- A buoyant bubble does not lead to fully developed convection unless the linear instability criterion is satisfied.
- In 3D buoyant bubbles rise faster against advection.
- In 3D a more efficient turbulent mixing increases the efficiency of the heating in a runway process which may foster the onset of the explosion compared to 2D.
- The impact of the perturbations on the dynamics is stronger with increasing dimensionality and resolution.

(Kazeroni, Krueger, Guilet & Foglizzo 2017, in prep.)