LESSONS ON NUCLEOSYNTHESIS FROM

Grefenstette, Harri§on, Boggs, Reynolds, ... 2014

MULTI-DIMENSIONAL SUPERNOVA MODELS

William Raphael Hix (ORNL/U. Tennessee)

Blondin, Bruenn, Endeve, Frohlich, Harris, Lentz, Marronetti, Messer, Mezzacappa &
Yakunin (Florida Atlantic U., NC State U., ORNL, UT, LBL)



CHIMERA

CHIMERA has 3 “heads”
Spectral Neutrino Transport (MGFLD-TRANS, Bruenn)
in
Shock-capturing Hydrodynamics (VH1, Blondin)
Nuclear Kinetics (XNet, Hix & Thielemann)

Plus Realistic Equations of State, Newtonian Gravity
with Spherical GR Corrections.

Models use a variety of approximations

Self-consistent (ab initio) models use

-
full physics to the center. ( : g’\)\
Leakage & IDSA models simplify the “' 4”” % r
transport. o7 % \> .
Parameterized models replace the core \ & . ‘.. ‘

with a specified neutrino luminosity. Ray-by-Ray Approximation
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EXPLOSION ENERGIES

We must compare models against the myriad of other potential
observations. Foremost 1s the kinetic energy of the explosion.
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NICKEL MASS

Beyond the explosion energy, perhaps the most important observable
is the mass of *°Ni, because of its relation to the light curve.

0.09

0.08

%Ni Mass [Mg]
o
o
(@)}

0.06 |

| ——B12-WHO07

. —B15-WHO07
I B20-WHO07
- ——B25-WHO07

0.07F

>6Ni in the

,,,,,,,,,,,, “ejecta”

200 400 600 800 1000 1200
Time after bounce |[ms]

 ®NiMass[M]

0.12
01 _
0.08 - ° SN1987A . —
SN|2004et ‘ o
0.06 |- i _
SN 2004A
0.04 —
Q
0.02 SN|2004dJ |
0 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 |
10 15 20 25

ZAMS Progenitor Mass [M_]

The ejected °°Ni mass saturates in time with the explosion energy.

Results are reasonable, when compared to observations.

Fallback over longer timescales 1s uncertain. Recent studies are
finding differing results on fallback and °°Ni has higher velocity.
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END OF THE EXPLOSION?
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WHAT IS 2D GOOD FOR?

In both 2D and 3D, explosions are preceded by the development of
large scale convective flows that span the heating region.
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Is 2D TURNING DOWN THE HEAT?

The Rayleigh-Taylor Instability, driven in CCSN by neutrino heating,
favors large scale plumes, regardless of dimensionality.

In 2D, the turbulent cascade
also favors organizing small
scale motion into larger
scale flows.

However, 1n 3D, the cascade
favors tearing apart large
scale flows. Thus in 3D, R-T
requires more time and
more heating to develop.
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This implies that successful 2D models will tend to have lower

entropy 1n the heating regions.

This likely impacts the degree of alpha-richness in the ejecta.

W. R. Hix (ORNL/
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SUPERNOVA NUCLEOSYNTHESIS
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VELOCITY DISTRIBUTION

Unlike 1D, Nickel and Titanium have higher velocities than Silicon
and Oxygen, thus they are not preferentially sensitive to fallback.
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EVACUATING THE HOT BUBBLE

Even more than 2 seconds after bounce, nearly 0.1 Mg remains in the

Hot Bubble, except the 12 Mgy model w]
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TRACING THE MASS CUT

Post-processing of tracer particles 1s required for nucleosynthesis
predictions beyond the built-in network, a-network or otherwise.

Their Lagrangian view also reveals the complexity of the mass cut.
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LATITUDE DEPENDENCE

With 4Q columns of = — == E
tracers 1n each model, \ / = |
we can examine the =" \/  mewHOnCL

- \\ / — {lshock 0 '
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NUCLEOSYNTHESIS TESTING

By computing the post-process nucleosynthesis in the same fashion as
that built into CHIMERA, we learn about the limits of the tracers.
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The limitations of the a-network, when compared to a more realistic
network, are most evident in the o-rich freezeout and for A > 56.
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VP-PROCESS IS MISSING

The vp-process 1s very weak in these models.
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The suppression of the PNS wind is delaying or preventing a strong
Vvp-process from occuring.
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COMPARING TO STANDARD

Until we can
replace 1D CCSN
models 1n all of
their applications,
we can use the 2D
models to identity
areas of concern.

Intermediate
mass elements,
up to A=50, are
similar, though
significant
1SOtOpIC
differences exist.
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Iron peak and heavier, up to A=90, the differences get larger.

W. R. Hix (ORNL/UTK)

Ringberg Workshop on The Progenitor-Supernova-Remnant Connection, July 2017



ISOTOPIC COMPARISON

—eo— CHIMERA - o- WHO07

[sotopic comparisons
reveal significant
differences from 1D on
both the proton-rich and
neutron-rich sides.

Ejection of small
quantities of neutron-rich,
(Y.<0.45), low entropy
matter produces significant
amounts of neutron-rich
intermediate mass 1sotopes

like *8Ca and *Cr.

Production Factor (X/Xg)
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higher Y. (<0.48) and
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THERMODYNAMIC VARIETY

Multi-dimensional dynamics allows the ejecta to experience a wider
variety of temperature, density, electron fraction and neutrino
exposure.
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Deeper Mass Cut and weaker explosion results in modest increase in
intermediate mass and 1ron-group elements.
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MAGIC OF 48CA

*Ca, with 20 protons and 28 neutrons, is a doubly-magic nucleus.
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Making **Ca requires neutron-rich NSE conditions, but if temperature
gets too high, a-rich freezeout converts to neutron-rich iron or nickel.
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STRIPPING A NEUTRON STAR

Relatively cold, but neutron-rich, matter 1s trapped in the neutron star
and not ejected 1n the parameterized spherically symmetric models.

In the self-consistent, multi-dimensional CCSN models, accretion
streams occasionally dredge neutron-rich matter off the neutron-star.

If this matter 1s Heger 9.6 Mo, Z=0
not strongly =
heated by
subsequent 10°
Interactions, it
can retain **Ca. o

104

10°
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such matter can be lifted directly by shock and convection.

10°
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CONCLUSIONS

Examining the nucleosynthesis of CCSN with models that selt-
consistently treat the explosion mechanism requires running the
models to times > 1 second after bounce for uncertainties like the
mass cut, thermodynamic extrapolation, etc. to become tractable.

Even then, low post-processing resolution 1s a significant uncertainty.

Differences from 1D models are seen 1n differing amounts of 1ron

peak and intermediate mass elements as a result of changes in the
and

The ejection of significantly more proton-rich matter as well as small
quantities of neutron-rich matter can change the production of
individual 1sotopes by orders of magnitude.

Neutrino-Driven wind 1s strongly suppressed by accretion.

There 1s considerable commonality in the production of species from
NSE freezeout between lower mass CCSN and ECSN.
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