The impact of modest stellar rotation on the asymmetric
explosion of massive stars

How much rotation can

make a difference on the

explosion threshold and
NS birth?
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What is the interplay between SASI and
the corotation 'low T/|W|" instability?

Why is the prograde mode of SASI
destabilized by rotation?

Is the corotation instability similar to
isolated NS with differential rotation ?

Should we expect different
GW signatures from these
two instabilities?
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How much rotation is needed to affect the explosion?

slow rotation (j = 10" cm?/s): spiral SASI
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retrograde pulsar spin is possible at birth
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Very fast rotation (Qy=2rad/s, j = 4x10'® cm?/s):
low-T/|W| instability
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but no effect for Q,=1rad/s, j = 2x10'® cm?/s
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Spin-up or spin-down of the neutron star?

feore [HZ] (scaled from axisymmetric collapse)

(Kazeroni+17)

range of
NS spin
at birth

For a strong rotation
rate, the corotation
instability decelerates
the neutron star by
less than 30%.



Physical insight from an experimental analogue of SASI
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Inviscid shallow water is analogue to an isentropic gas y=2

St Venant OH
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Increasing the rotation rate:
continuous transition from SASI to the corotation instability

20 g is. 5.3 ‘B 42 9 4 9 0 2 ¢ 3 o & & ¢ 4. 91§ 34 .3 '§
jump .\. i
154
£ open 4
S spiral SAS| L
7)) .
3 10 closed
ko | iral B
o | corotation Spira i
5 4 accretor [
o [ T ————

0 50 100 150 200 250
fountain rotation period (s)

the rotation period is gradually decreased (205s - 62s) 02 04 06 _ 08
the flow rate is gradually decreased (1.1 L/s - 0.59 L/s)

. : iy Advectiv
corotation radius (P1V) éfzz e egﬁ
—>the gravitational wave Eo i X
3 s . > )
spirl frequency .s,lgnat.ulre of the low T/|W| % g
instability may be hard to 10
| disentangle from the SASI € 20/
' oscillations (Kuroda+14) SR L o It
: "3 100 [ A REE ; : 3F
% 200 H(.,VUQU :ﬁ

Too [ms]



Unexpectedly robust spiral shock driven at the corotation radius
when the inner rotation rate reaches 20% Kepler (low T/|W|=0.02)

Radial accretion enforces
differential rotation
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Spiral instability with subsonic accretion

Instability mechanism: interaction of a corotation radius with
acoustic waves (Papaloizou & Pringle 84, Goldreich & Narayan 85)




Experimental growth rate and oscillation period
compared to shallow water modelling: a hint for an advective mechanism
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Rotation effect in shallow water equations
compared to gas dynamics

shocked gas dynamics shallow water equations
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Why is the prograde mode of SASI destabilized by rotation?
Why is the transition to the corotation instability so smooth?

The St Venant system of shallow water equations is a simpler framework to understand the coupling of SASI with rotation
and the transition to the low T/|W]| instability: -adiabatic equations (no neutrino cooling)
-no buoyancy effects



Compact formulation of the perturbative problem with rotation
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Wronskien resolution: convolution of the acoustic solution with the source term
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The Doppler shifted frequency ' =w — m_2L affects the phase mixing between the source and the acoustic wave
T

The frequency of the prograde mode is locally decreased by the doppler shift: the decrease of w’Tvy is favourable to
the advective-acoustic coupling as in Sheck+08 and Foglizzo 09 without rotation.

The corotation condition w'=0 favours the advective-acoustic coupling: the stationary phase prevents phase mixing




Analogue of SASI modes without rotation: Fry, Rj;/Rps
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Comparison of a shocked rotating flow and a trapped acoustic mode
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normal shock condition: vorticity + pressure perturbation

- as in Yamasaki & Foglizzo 08, the growth rate of the prograde mode increases
with the rotation rate

- a corotation radius can exist for rotation rates as low as 3% Vkepjer at r-
(T/W~0.05%)

- a corotation radius is not a sufficient condition for instability (e.g. Fr{=3, R=2)
- the transition from SASI to an instability with a corotation is very smooth
ad-hoc shock condition: total acoustic reflexion, no vorticity
- when acoustic reflexion at the shock is total, the existence of the corotation
radius is a sufficient condition for instability: similar to differentialy rotating NS

(Watts+05, Passamonti & Andersson 15, Yoshida & Saijo 17)

- a corotation radius can exist for rotation rates as low as 6% Vgepjer at I
(T/W~0.02%)

- however, the growth rate of this corotation instability seems loosely correlated
with the growth rate of the shocked flow.
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Conclusions

2D Cylindrical gas dynamics (Kazeroni+17) suggests that
-SASI can account for pulsar rotation periods down to ~50ms
-for rotation rates >100Hz the 'corotation instability' decreases the pulsar spin by <30%

Both instabilities are captured in the supernova fountain experiment

-as the injected angular momentum increases, the prograde spiral mode of SASI seems to connect
@ smoothly to the 'low T/|W|' instability

-the offset growth rate in the experiment suggests advection may play a dominant role even when a

@ corotation is present
—

The shallow water model offers a simple analytical framework to study the interplay of SASI & 'low T/W'
-equations are both simple and connected to a real experiment

-the rotational destabilization of the prograde mode of SASI can be explained by its lower doppler

e

shifted frequency which benefits to the advective-acoustic coupling

-a classical corotation instability is recovered as a purely acoustic process, despite radial advection,
if the shock is artificially replaced by a total acoustic reflection and no advected vorticity

-the existence of a corotation radius is not a sufficient condition for instability in a shocked flow

-the prograde mode of SASI can be more unstable than an acoustic corotation instability:
the stationary phase at the corotation radius favours the advective-acoustic coupling

— A sharp transition between SASI and the 'low T/|W|' instability in a shocked flow is not expected



