Ringberg Workshop on the Progenitor-Supernova-Remnant Connection 2017-07-28

3D simulations

of young supernova remnants

• Particle acceleration and high-energy observations

R

• From the supernova to the supernova remnant

Gilles Ferrand Research Scientist Astrophysical Big Bang Laboratory

SNRs as a key link between stars and the ISM 0.1

Tycho's SNR age: ~500 yr distance: 2-4.5 kpc size: 8' ~5-12 pc

> hot, turbulen metal-rich plasma

multiwavelength composite image:

(Chandra) - Optical (Calar Alto) - infrared (Spitzer)

- X-rays

enrichment in heavy elements

average stars: up to C-O massive stars: up to Fe supernovae: everything else?

injection of energy

heating of the gas hydrodynamic turbulence magnetic field amplification

acceleration of particles

larger powerful shock wave most favoured Galactic sources up to the knee (< 10^{15} eV)

SNR broad-band emission

reviews (at high energies): Reynolds 2008, Vink 2012

3D simulations of young SNRs with particle acceleration

Anne Decourchelle Head of astrophysics division at CEA Saclay

Samar Safi-Harb Prof. at the University of Manitoba

Numerical simulations: hydro + kinetic

1.1

Thermal emission

Thermal emission in each cell depends on:

- plasma density n^2
- electron temperature T_e

progressive equilibration with protons temperature T_p via Coulomb interactions

• ionization states $f_i(Z)$ computation of non-equilibrium ionization with the exponentiation method

$$\tau_I = \int_{t_S}^t n(t').\mathrm{d}t'$$

All these parameters depend on the **history** of the material after it was shocked.

Ferrand, Decourchelle, Safi-Harb 2012

test particle vs. back-reaction

Non-thermal emission

Non-thermal emission in each cell depends on:

- pion decay: **plasma density** n(x,t)
- synchrotron: **magnetic field** B(x,t) (amplified at the shock, then frozen in the flow)
- Compton: ambient photon fields (CMB)

Note: the acceleration model gives the CR spectra just behind the shock $f_p(p, x, t)$, $f_e(p, x, t)$ they must be **transported** to account for losses:

• adiabatic decompression
$$\alpha = \frac{\rho(x,t)}{\rho(x_S,t_S)}$$

• radiative losses
$$\Theta \propto \int_{t_S}^t B^2 \alpha^{\frac{1}{3}} dt$$

Ferrand, Decourchelle, Safi-Harb 2014

^{1.4} Thermal + non-thermal emission in X-rays

Tycho's SNR SN 1572 thermonuclear **Cas A SNR** (missed SN) core-collapse

age: ~330 yr distance: 3.3-3.7 kpc size: 5' ~5-7 pc

multi-wavelength composite: X-rays (Chandra 1-2 keV and 4-6 keV) optical (Calar Alto) infrared (Spitzer) multi-wavelength composite: X-rays (Chandra 0.5-2.5 keV and 4-6 keV) near IR (Hubble) infrared (Spitzer)

1.5

^{1.6} The two types of supernovae and their remnants

explosion	thermonuclear	core-collapse
SN type	Ia	II, Ib/c
energy	$10^{51} \text{ erg} = 10^{44} \text{ J}$	10 ⁵¹ erg = 10 ⁴⁴ J
ejected mass	1.4 solar masses	a few solar masses
ejecta profile	steep power-law ~r ⁻⁷	steeper power-law ∝r ⁻⁹
ambient density profile	uniform ISM ~r ⁰	stellar wind ∝r ⁻²
3D morphology	usually simple	often complex
ambient magnetic field	uniform ≈ few µG	(uncertain)
q = density, velocity, pressure	$\begin{array}{c} 100 \\ 10 \\ 10 \\ q_{\rm FS} \\ 0.1 \\ 0.01 \\ 0.8 \\ 0.9 \\ 1 \\ 1.1 \end{array}$	$\begin{array}{c} 100 \\ 10 \\ 10 \\ q_{FS} \\ 1 \\ 0.1 \\ 0.01 \\ 0.8 \\ 0.9 \\ 1 \\ 1.1 \end{array}$

CC SNR vs TN SNR: density

thermo-nuclear supernova

type Ia in a uniform ISM n=7, s=0 (t = 500 yr)

Ferrand and Safi-Harb 2016

core-collapse supernova

type II in the progenitor's wind n=9, s=2 (t = 300 yr)

CC SNR vs TN SNR: thermal X-rays

thermo-nuclear supernova

type Ia in a uniform ISM n=7, s=0 (t = 500 yr)

Ferrand and Safi-Harb 2016

core-collapse supernova

type II in the progenitor's wind n=9,s=2 (t = 300 yr)

From the supernova to the remnant

Friedrich (Fritz) Röpke

Prof. at Ruprecht-Karls-Universität Heidelberg, Head of stellar group at Heidelberg Institute for Theoretical Studies

Shigehiro (Hiro) Nagataki

Associate Chief Scientist, Astrophysical Big Bang Laboratory

^{2.1} From the 3D supernova to the 3D remnant

3D SNR simulations

What can the SNR tell us about the explosion?

Simulating a TN SN: initial conditions

initial flame configuration? grid of ignition patterns

Seitenzahl et al 2013

Simulating a TN SN: hydro 3D evolution

2.3

(b) N100; t = 0.70 s

(d) N100; t = 0.93 s

(f) N100;
$$t = 1.00 \text{ s}$$

propagation of the flame? interaction with turbulence (sub-grid modeling) deflagration or detonation? most popular model = transition from deflagration to detonation (DDT)

Seitenzahl et al 2013

Simulating a TN SN: nucleosynthesis

_

tracer particles for N100 model

Element	Atomic mass A	Element	Atomic mass A
n	1	Sc	4050
р	1	Ti	4252
Ĥe	4,6	v	44 54
Li	6, 7, 8	Cr	4656
Be	7, 9, 10, 11	Mn	4858
В	8,912	Fe	5062
С	1015	Co	5263
Ν	12 17	Ni	5467
0	1420	Cu	5669
F	1721	Zn	5972
Ne	1825	Ga	61 76
Na	2026	Ge	63 78
Mg	2128	As	7180
Al	2330	Se	7483
Si	2533	Br	7583
Р	2735	Kr	7887
S	2938	Rb	7987
Cl	3140	Sr	8491
Ar	33 44	Y	8591
K	3546	Nb	9197
Ca	3749	Mo	9298

nuclear reaction network in post-processing with 384 nuclides → distribution of elements

> many still unstable: radioactive decay

Seitenzahl et al 2013

(j) X(12C)

0.00 0.25 0.50 0.75 1.00

SN Ia explosion model

N100 model – delayed detonation of a Chandrasekhar mass white dwarf

total mass density

composition: 56Ni 16O 12C

iso-contours

on Sketchfab https://skfb.ly/ 6pKYW

> volume rendering

(custom-made, live demo)

data from Seitenzahl et al 2013 courtesy Fritz Röpke

^{2.6} 3D immersive visualization (Virtual Reality)

density slices

t = 1 yr, 2 yr, 5 yr, 10 yr, 20 yr, 50 yr, 100 yr, 200 yr, 300 yr, 400 yr, 500 yr

First results for the SNR (hydro)

Röpke 3D

t = 100 yr

t = 500 yr

PRELIMINARY

density slice

density projection

To be continued...