SN[®] Afterglows in γ-Ray Lines

(MPE Garching, Germany)

with

Thomas Siegert, Christoph Weinberger, Moritz Pleintinger, Daniel Kröll, Jochen Greiner, Xiaoling Zhang (MPE), Martin Krause, Karsten Kretschmer, Keiichi Maeda, and many others at other institutions

Massive Stars / Groups, and Supernova Explosions

SN 2014J KAIT/LOSS color image

Roland Diehl

"Progenitor - Supernova - Remnant Connections", Ringberg Castle, 23-28 Jul, 2017

i esa

Nuclei: one of the astronomical messengers

Nuclear line transitions

 \rightarrow atomic state ~irrelevant

Radioactive decay

 \rightarrow a natural clock

Nuclear Gamma-Ray Lines from Supernovae

Radioactive trace isotopes are by-products of nucleosynthesis reactions Released from the supernova explosion, we observe gamma-ray afterglows:

Isotope	Mean Lifetime	Decay Chain	γ-Ray Energy (keV)	
⁵⁶ Ni	111 d	$^{56}Ni \rightarrow {}^{56}Co^* \rightarrow {}^{56}Fe^* + e^+$	158, 812; 847, 1238	individual object/even
⁵⁷ Ni	390 d	$^{57}Co \rightarrow ^{57}Fe^*$	122	
⁴⁴ Ti	85 y	$^{44}\text{Ti} \rightarrow ^{44}\text{Sc}^* \rightarrow ^{44}\text{Ca}^* + e^+$	78, 68; 1157]]
²⁶ AI	1.04 10 ⁶ y	$^{26}\text{AI} \rightarrow ^{26}\text{Mg}^* + \text{e}^+$	1809	cumulative
⁶⁰ Fe	3.8 10 ⁶ y	60 Fe \rightarrow 60 Co* \rightarrow 60 Ni*	59, 1173, 1332	events
e ⁺	10 ⁵ y	$e^+ + e^- \rightarrow Ps \rightarrow \gamma\gamma$	511, <511	

- Million years to ~one week (${}^{26}AI {}^{44}Ti {}^{56}Ni/{}^{56}Co$)
- Typically 10⁻⁵ ph cm⁻² s⁻¹

²⁶Al in our Galaxy: γ-ray Image and Spectrum

²⁶Al in our Galaxy: γ-ray Image and Spectrum

Using the ²⁶Al Line to Characterize the Galaxy's SN Activity

Measured Gamma-Ray Flux* *) better account for foreground emission Galaxy Geometry

²⁶Al Yields per Star

Stellar Mass Distribution

²⁶Al Yields from Massive Stars

→ Diehl et al., in prep. (2017)* ²⁶Al Mass in Galaxy = $2.0 (\pm 0.3) M_{\odot}$

→ Diehl et al., Nature 2006 → Diehl et al., A&A 2010*

✓ cc-SN Rate = 1.3 (± 0.6) per Century

Star Formation Rate = 2.8 M $_{\odot}$ /yr

"Progenitor - Supernova - Remnant Connections", Ringberg Castle, 23-28 Jul, 2017

Resolving ²⁶Al Emission from Specific Groups of Stars

Massive-Star Groups and their SNe

- The "outputs" of massive stars and their supernovae
 - Winds and Explosions
 - Nucleosynthesis Ejecta
 - Ionizing Radiation

Radioactivities from massive stars: ⁶⁰Fe, ²⁶Al

Massive-Star Interiors

(adapted from Heger)

- Hydrostatic fusion
- WR wind release
- Late Shell burning
- Explosive fusion
- Explosive release

Understanding Massive-Star Groups

- We study the "outputs" of massive stars and their supernovae
 - Winds and Explosions
 - Nucleosynthesis Ejecta
 - Ionizing Radiation
- We get observational constraints from
 - Star Counts
 - ISM Cavities
 - Free-Electron Emission
 - Radioactive Ejecta

Supernova ejecta in the dynamic interstellar medium

ISM Dynamics ← → Ejecta in SNR and (Super-)Bubbles

Multi-Messenger Obs & Simulations

(Cygnus, Orion, Scorpius-Centaurus, Carina)

Massive Star Groups in our Galaxy: ²⁶Al γ -rays

"Progenitor - Supernova - Remnant Connections", Ringberg Castle, 23-28 Jul, 2017

The velocities versus Galactic longitude

Excess velocity seen for ²⁶Al ejecta versus, e.g., CO!

Roland Diehl

How massive-star ejecta are spread out...

Superbubbles blown into inter-arm regions

How ejecta are spread out on the My scale...

• SN ejecta are in superbubbles, preferentially (not SNR!)

[&]quot;Progenitor - Supernova - Remnant Connections", Ringberg Castle, 23-28 Jul, 2017

Nucleosynthesis in CC-Supernova Models and ⁴⁴Ti

⁴⁴Ti γ -rays from Cas A

44Ti Ejected Mass ~1.23 ± 0.25 10⁻⁴ M_{\odot}

→ see talk by Chris Weinberger

Are all Core Collapse Supernovae ⁴⁴Ti Sources?

☆ Cas A is the ONLY Source Seen in our Galaxy

1.39e-05

1.62e-05

- ☆ Sky Regions with Most Massive Stars (inner Galaxy) are ⁴⁴Ti Source-Free
- ☆ We would expect to see > a few of such sources!

1.85e-05

9.29e-06

1.16e-05

"Progenitor - Supernova - Remnant Connections", Ringberg Castle, 23-28 Jul, 2017

2.31e-05

2.54e-05

2.08e-05

2.77e-05

[&]quot;Progenitor - Supernova - Remnant Connections", Ringberg Castle, 23-28 Jul, 2017

⁵⁶Ni Radioactivity Decay Chain and Gamma-Rays

Roland Diehl

"Progenitor - Supernova - Remnant Connections", Ringberg Castle, 23-28 Jul, 2017

SN2014J: Discovery of ⁵⁶Ni γ -ray lines

SN la in M82

(Starburst Galaxy)

- Discovered 22 Jan 2014
- Likely Explosion Date: 14 Jan 2014 (14.75 +/-0.3d)
- Distance 3.3....3.53 Mpc, I=141.41°, b=40.56°
- Closest SN Ia in 40 y!
- ⁵⁶Ni γ rays seen early
 - Envelope still thick to γ -rays \rightarrow surface ⁵⁶Ni
 - Lines not shifted
 → He in orbital plane, off plane aspect angle

Longterm Data: Broad Lines from ⁵⁶Co!

INTEGRAL Obs from 31 Jan till 26 Jun 2014

Line flux [cm⁻² s⁻¹]

"Progenitor - Supernova - Remnant Connections", Ringberg Castle, 23-28 Jul, 2017

The Challenge of Finding Cosmic Gamma-Rays

- Current Gamma-Ray Telescopes Have Large Intrinsic Background
 - Cosmic Ray Activation of Spacecraft and Instrument

from Churazov et al., 2014

"Progenitor - Supernova - Remnant Connections", Ringberg Castle, 23-28 Jul, 2017

SN2014J Data Analysis

Energy [keV]

Roland Diehl

1.0×10⁴

"Progenitor - Supernova - Remnant Connections", Ringberg Castle, 23-28 Jul, 2017

SN2014J data Jan – Jun 2014: ⁵⁶Co lines

– Doppler broadened ✓

- Split into 4 time bins
- Coarse & fine spectral binning
- → Observe a structured and evolving spectrum
- expected:
 gradual appearance
 of broadened ⁵⁶Co lines
 - Diehl et al., A&A (2015)

SN2014J data Jan – Jun 2014: 847 keV ⁵⁶Co line

(cmp from bol. Light \rightarrow 0.42 +/-0.05 M_{\odot}

from models \rightarrow 0.5 +/-0.3 M_{\odot}

• Diehl et al., A&A 2015

Roland Diehl

Summary: γ-rays from supernovae

 ²⁶Al throughout the Galaxy show that superbubbles hosts and re-cycle ejecta from Sne

- ⁴⁴Ti origins must be from rare sources (<< SN rate)
- ⁵⁶Co γ-ray emergence from SN2014J indicates 'porosity' / 3-dimensional structure

cm⁻² (10keV)⁻¹]

⁻¹ux [10⁻⁵ ph s⁻¹