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Stellar Collapse and Supernova Stages
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3Neutrino-driven
SN Explosions

(Janka, Supernova 
Handbook, 2017)
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Status of Neutrino-driven Mechanism in 
2D & 3D Supernova Models 

● 2D models including GR effects explode for “soft” EoS, 
but explosions are low in energy and late in general.

● 3D modeling is only in its initial stages and no final 
conclusion can be drawn yet.

● Several groups achieved 3D explosions but less 
robustly than in otherwise identical 2D simulations.

● Robustness of explosions increase by adding 
additional ingredients, e.g. rotation, 3D progenitor 
perturbations or slightly reduced neutrino-nucleon 
scattering opacities
– 3D results are however not converged in terms of spatial 

resolution yet
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What could facilitate robust explosions 
in 3D? 
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Uncertain microphysics in 
neutrinospheric region

● Strangeness contribution to nucleon spin 
affecting axial-vector neutral-current scattering 
on nucleons

see Melson et al, ApJL 808 (2015) L42
Successful 3D explosion of a 20M

sun
 (W&H 2007) 

progenitor using a strange contribution of 
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● Virial correction to neutral-current scattering
– Modification of the axial vector response due 

to spin correlation effects in the virial 
expansion
see Horowitz et al, Phys. Rev. C 95, 025801 (2017)

– Reduces neutrino-nucleon scattering opacity 
around neutrinospheric region but is strongly 
temperature dependent

Uncertain microphysics in 
neutrinospheric region
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Can lead to easier explosions

see Burrows, arXiv:1611.05859 

Uncertain microphysics in 
neutrinospheric region
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Uncertainties in high density 
equation of state

● Hyperons
– Strong interactions between hyperon-hyperon and 

hyperon-nucleon are poorly constrained

– Reduction of cold maximum neutron star mass due 
to loss of neutron degeneracy pressure is 
significant

● Quarks
– Exotic physics and problems with maximum neutron 

star mass
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● Muons
– Ideal Fermi-gas of muons analogous to electrons

– Only classical physics needed

– Maximum cold neutron star mass is only weakly 
affected

– Weak interactions and lepton number conservation 
require integration into neutrino transport

– Theoretical presence of muons not disputed, but 
typically neglected except in Kelvin-Helmholtz 
phase of PNS cooling, cf. Pons et al., Astrophys.J. 
513 (1999) 780

Uncertainties in high density 
equation of state
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Muons in hot neutron-star medium

Arxiv:1706.04630
Bollig, R.; Janka, H.-Th.; Lohs, A.; Martinez-Pinedo, G.; Horowitz, C. J.; 

Melson, T.

● Muon rest mass much larger than electron rest 
mass 

● But: Temperatures in PNS mantle become 
hotter than 30 MeV and electron chemical 
potential μe > 100 MeV can be reached easily
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Muons in hot neutron-star medium

● T > 30 MeV leads to mean particle energies of 
the order of the muon restmass and allows 
abundant production by pair conversion 
processes → EoS component of muon gas

● Electron and muon chemical potential are 
coupled by beta equilibrium → neutrino 
transport dependent component of muon gas
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Muons in hot neutron-star medium

● Example PNS conditions at 400ms after core-
bounce: s20.0-SFHo
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Muons in hot neutron-star medium

● Muons participate in weak equilibrium by a 
variety of neutrino processes, in particular 
charged-current reactions with nucleons:

● In contrast to electrons the muon restmass can 
not be neglected → All involved opacities need 
to be generalized to finite lepton mass

● In particular: Weak magnetism correction of 
Horowitz (2002) can not be applied to muonic 
beta-processes 
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● Additional reactions of neutrinos with electrons 
produce muons and couple neutrinos of 
different flavors:

Muons in hot neutron-star medium

see PhD Thesis (A.Lohs 2015)
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Prometheus-VERTEX

● Hydro module Prometheus
● PPM method, Godunov-type exact solver
● Newtonian self-gravity with effective GR potential 

corrections
● Tabulated EoS for HD and analytical EoS for LD

● Neutrino transport module VERTEX
● Implicit two-moment scheme with variable 

eddington factor closure
● “Model Boltzmann equation” is solved using a 

tangent-ray angular discretization and the moment 
equations by the “ray-by-ray plus” method

● comprehensive set of neutrino interactions 
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β-Processes Burrows&Sawyer(1999); Horowitz(2002)

Burrows&Sawyer(1999); Horowitz(2002)

Langanke et al (2003)

Scattering Horowitz(1997); Bruenn&Mezzacappa(1997); 
Langanke et al.(2008)

Burrows&Sawyer(1998); Horowitz(2002)

Mezzacappa&Bruenn(1993b); Cernohorsky(1994)

Buras et al.(2003)

Pair production Bruenn(1985); Pons et al (1998)

Buras et al.(2003)

Bremsstrahlung Hannestad&Raffelt(1998)

Prometheus-VERTEX
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● Modifications to base code
– Add additional evolution equation for muon number

– Generalize neutrino transport to evolve all six 
neutrino species individually

● Weak magnetism effects on neutral-scattering 
by itself leads to natural buildup of mu and tau 
neutrino number

● Additional muonic reactions lead to full coupling 
between                        and 

Prometheus-VERTEX



19

1D results

● s20.0 progenitor (Woosley & Heger 2007) with 
SFHo EoS
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2D results

● Inclusion of muons can lead a non-exploding 
model to explosion in 2D

SFHo EoS; no 
muons

SFHo EoS; with 
muons
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2D results

● Composition 
400ms 
postbounce

● Thermal energy 
is converted to 
restmass energy 
and electron 
degeneracy 
pressure is 
reduced
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2D results

● Inclusion of 
muons facilitates 
the neutrino-
driven mechanism

● PNS radius 
shrinks more 
rapidly
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2D results

● More rapidly contracting NS leads to hotter 
neutrino emission, increasing gain layer heating
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2D black hole collapse

● u75.0 (Woosley & 
Heger 2002)

● Collapse is 
significantly faster 
by inclusion of 
muons

LS220 EoS; no 
muons

LS220 EoS; with 
muons
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● Neutrino emission strongly increased by muon 
inclusion

2D black hole collapse
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Consequences

● Affect explosion mechanism of supernovae

● Affect gravitational instability of hot NSs to BHs

● Affect compactness of hot NSs

● Change neutrino emission

● May affect neutrino oscillations

● Should be included in SN and NS-NS/BH merger 
simulations

● Require full six-species neutrino transport with coupling of 
different neutrino flavors
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● νe opacities at 400ms postbounce: s20.0-SFHo

Appendix: Opacities
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● νe opacities at 400ms postbounce: s20.0-SFHo

Appendix: Opacities
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● νμ opacities at 400ms postbounce: s20.0-SFHo

Appendix: Opacities
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● νμ opacities at 400ms postbounce: s20.0-SFHo

Appendix: Opacities
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Appendix: Muonic opacities of ν
μ
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