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Scintillation Arcs
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PSR B1508+55 (J1509+5531)

Located in the constellation Draco, this bright pulsar is
moving away from the galactic plane at a speed of 963
km/s, which is one of the largest known pulsar velocities.

Motivations for this study

Stripes:

* Unusual parallel features known since Stinebring 2007.

* Not predicted by single thin anisotropic scattering screen
consisting of plasma:
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Observations at Effelsberg (100-m telescope) interstellar medium

* Circumpolar source

* Bandwidth 1.27-1.45 GHz

* 64 observations, 214 hours in total

* Dynamic spectra: brightness of pulses over
time and frequency, used to produce

* Secondary spectra: 2D Fourier transformation

Echo crossing:
- - — - * Trailing pulse components visible at 150 MHz (LOFAR).
27.05.2020 31.05.2020 08.06.2020 22.09.2020 10.11.2020 16.11.2020 20.11.2020 27.11.2020 - Localized by Wucknitz 2019 using VLBI to be up to 0.5
arcseconds away on a screen of 120 pc distance.
* Crossing of the main pulse predicted for 2021.
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Scintillation Arc Variation Feature Movement - Eigenvector Decomposition
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Doppler rate fp 0
* Requires a one-dimensional distribution of images.

10.08.2021 23.08.2021 30.08.2021 07.10.2021 11.11.2021 * Secondary spectrum can be transformed to space of
interfering paths (Sprenger et al. 2021).

* Eigenvector gives brightness distribution of images.
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Feature Alignment Transition Eigenvector Modulation

eigenvectors

Example November 11 in 2021

* Obtained eigenvectors over 10 minute
slices

* Transform secondary spectra along arc to angular coordinates. Until September 2020:
* Align the features visible in these plots.
* Stripes are at constant angular position and allow precise correlation method.
* One data point for each pair of observations.
* Contains the same information as parabolic curvature.

* Dynamic spectra are dominated by vertical modulations.

* Secondary spectra show a thin arc and parallel stripe-like features. : Y-axis: Angle on screen in model
* Many observations contain a second weaker arc. independent units.

Only possible for strong scintillation

Can be split into a constant inherent
brightness and a modulation.

Modulation sweeps across the screen

* Strong scintillation data needs manual alignment. Dynamic Spectrum 8.4.2020 _ Secondary Spectrum 8.4.2020
* Alignment of data from March 13 to June 8 in 2020 shown below.
* X-axis: angular coordinates on the screen in model independent units.

* Y-axis: modified Julian date of observation. 1 0.5 1.0 1.5 :
~ ¢ ] with constant speed.
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Annual Variation Simulations for two Screens
The plots below show the collected data of the alignment as well as the arc curvature translated into the shift it * Eigenvector modulation is very strong evidence for a second screen. % '\
corresponds to in the feature alignment. The variation of the primary arc is obviously dominated by the earth's motion * Point of same lensing magnification is sweeping along screen
around the sun while the secondary arc only allows for low accuracy measurements and is compatible to a constant. This * We derived a double screen theory using wave optics and starting from these
means its screen is much farther away than the primary screen. assumptions inferred from the data:
The separation between weak (WS) and strong (SS) scintillation is necessary since the phase of the annual variation « Anisotropy: Phase factors on the screen only depend on one coordinate.
slightly changed. A possible explanation for this is a slight shift in the orientation of anisotropy of the primary screen. The el . . : :
. : . : : ) . . : * Stability: Only along this axis, images stay at a fixed coordinate.
obtained geometrical parameters from fits to this data are consistent with the screen distance and orientation found by _ _ _
Wucknitz 2019. Future study will also contain data obtained at LOFAR during the same time. ) S;]mulatlons below show that this theory can be used to model all observed
phenomena.
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