The Bluedisk project: searching for footprints of gas accretion

Jing Wang (KIAA) and Bluedisk team

jwang_astro@pku.edu.cn

Berlin, 2019
The Bluedisk project

Goal: searching for signs of gas accretion in and around HI-rich galaxies

The origin of “Bluedisk”: HI-rich galaxies are on average bluer on their outer regions

Collaborators:
F. Bigiel (ITA/Heidelberg Univ.)
J. Brinchmann (Leiden)
D. Carton (Leiden)
D. Cormier (Heidelberg Univ.)
M. den Heijer (Bonn)
J. Fu (SHAO)
K. Gereb (ASTRON)
G. Kauffmann (MPA)
M. L. Huang (MPA)
G. Jozsa (ASTRON)
C. Li (THU)
T. Oosterloo (ASTRON)
S. Roychowdhury (MPA)
P. Serra (INAF)
T. van der Hulst (RUG)
M. Verheijen (RUG)
E. Wang (UZH)
J. Wang (KIAA)

HI images (PI: G. Kauffmann)
CO images (PI: F. Bigiel)
Optical long-slit spectrum (PI: J. Brinchmann)
The sample

Sample: $\log M_*/M_{\text{sun}} \sim 10-11$, $z \sim 0.023-0.03$ (Dis>100 Mpc)
- 23 HI-rich and 19 control galaxies that are relatively isolated (no major merger companion within 100 kpc)
- 8 interacting systems.

Wang+13
Comparing HI-rich with control galaxies

Signatures of gas accretion

Wang+13
Structure of the HI-rich galaxies

We compare HI-rich to control:

The HI-rich galaxies are similar to or even less disturbed than the control galaxies (Wang+13, 14)
The optical outer disk breaks

Related to strong stellar migration, accretion or in-situ star formation

<table>
<thead>
<tr>
<th>Sample</th>
<th>total</th>
<th>exponential</th>
<th>down-bending</th>
<th>up-bending</th>
<th>exponential</th>
<th>down-bending</th>
<th>up-bending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluedisk</td>
<td>27</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>13</td>
<td>2</td>
</tr>
</tbody>
</table>

Wang+17
Conformity in HI-richness

In satellites (E. Wang+15) \((M_{\text{HI}} > 10^8 M_\odot)\)

- HI-rich central
- Control central

Satellites around HI-rich central
Satellites around control central

Signal cumulated outside detectable sources (J. Wang+15) \((M_{\text{HI}} < 10^8 M_\odot)\)

A common underlying reservoir of gas for both central and satellite galaxies
Satellites around HI-excess and normal centrals show considerable difference in morphology of HI discs. (E. Wang+15)
Possible signatures of gas accretion in low-redshift, high-\(M_\ast\) and HI-rich disc galaxies?

- blue and up-bending optical outer disks.
- an HI-rich environment extending to \(\sim\)Mpc distances.
Among the HI-rich galaxies

Different ways of accretion?
Two types of HI excess radial distributions in HI-rich galaxies

Excess HI at the center: E-center, and at the edge: E-edge

- Two types of gas accretion?
- Two steps of gas accretion?
- Different efficiencies of converting to the molecular?

Wang+14, in prep
Unlikely two steps of gas accretion

Unlikely due to difference in atomic-to-molecular conversion

Likely just less accretion in the inner region of E-edge galaxies.

A sub-sample confirmed by CO images, Cormier+16

In prep
Other differences

<table>
<thead>
<tr>
<th>Parameter</th>
<th>M*</th>
<th>μ*</th>
<th>Σ1</th>
<th>R25</th>
<th>Δ g-i</th>
<th>SFR</th>
<th>sSFR</th>
<th>Δ f_{HI}</th>
<th>f_{HI}</th>
<th>t_{orbit}</th>
<th>Σ3</th>
<th>M_{halo}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>M☉</td>
<td>M☉ kpc⁻²</td>
<td>M☉ kpc⁻²</td>
<td>kpc</td>
<td>M☉ yr⁻¹</td>
<td>dex</td>
<td>yr⁻¹</td>
<td>dex</td>
<td>kpc⁻²</td>
<td>dex yr</td>
<td>Mpc⁻²</td>
<td>dex M☉</td>
</tr>
<tr>
<td>P_{KS} (EC vs EE)</td>
<td>0.20</td>
<td>0.38</td>
<td>0.20</td>
<td>0.21</td>
<td>0.96</td>
<td>0.38</td>
<td>0.13</td>
<td>1.00</td>
<td>0.12</td>
<td>0.02</td>
<td>0.92</td>
<td>0.08</td>
</tr>
<tr>
<td>Med (EC)</td>
<td>10.35</td>
<td>8.19</td>
<td>9.12</td>
<td>16.65</td>
<td>-0.25</td>
<td>2.37</td>
<td>-9.99</td>
<td>0.22</td>
<td>-0.25</td>
<td>8.80</td>
<td>0.88</td>
<td>12.08</td>
</tr>
<tr>
<td>Med (EE)</td>
<td>10.50</td>
<td>8.41</td>
<td>9.32</td>
<td>21.10</td>
<td>-0.26</td>
<td>2.06</td>
<td>-10.16</td>
<td>0.23</td>
<td>-0.38</td>
<td>8.91</td>
<td>0.70</td>
<td>12.55</td>
</tr>
<tr>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>P_{KS} (EE vs ctrl)</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E-center

No significant bars
E-edge

Almost all the face-on disks are barred

In prep
What might have produced the excess of HI at the optical disk edge?

- long orbital time.
- massive halos ($\sim 10^{12.5} M_\odot$)
- High frequency of hosting strong bars