Dylan Nelson (MPA)

Harnack House, 3 Oct, 2019

What I'm not going to talk about:

galactic-scale outflows in TNG50

What I am going to talk about: the cold-phase of the CGM, particularly in massive (LRG) halos luminous red galaxies in SDSS 7~0.5 $M_{halo} \sim 10^{13-13.5} M_{sun}$ $M^* \sim 10^{11-11.5} M_{sun}$ quiescent

observations: the cold-phase of the CGM in massive (LRG) halos

Zhu+ (2014) - MgII and FeII [~35k b<1Mpc]

"the density of MgII clouds around LRGs is consistent with the cosmic value"

Lan+ (2018) – MgII and FeII [~190k <1Mpc] "a non-negligible amount of cool gas is found around LRGs with no significant SF activity within 1-2 Gyr"

Berg+ (2019) – RDR-LRG: HI [21] "plentiful dense, cold gas surviving deep in the halos of very massive galaxies"

Chen+ (2018), Zahedy+ (2019) – COS-LRG: HI and MgII [16] "high N(HI) gas is common in these massive quiescent halos"

All cosmological hydro simulations of galaxy formation fail to reproduce the small-scale, cold-phase of the CGM.

The IllustrisTNG simulation suite: three volumes from 50 to 300 Mpc, at fixed model.

300 Mpc

						Dylan Nelson (MPA)
	Run Name		TNG50	TNG100	TNG300	+ the TNG team
bigger the better	Volume	[Mpc ³]	51.7 ³	110.7 ³	302.6 ³	Statistics/ability to make representative samples
	L _{box}	[Mpc/h]	35	75	205	
	$N_{ m GAS}$	-	2160³	1820^{3}	2500^{3}	Same as original Millennium
	N _{DM}	-	2160³	1820^{3}	2500^{3}	
	N_{TR}	-	2160³	2×1820^{3}	2500^{3}	
smaller the petter	<i>m</i> _{baryon}	$[M_{\odot}]$	$8.5 imes 10^4$	1.4×10^6	1.1×10^{7}	Average mass of a star particle or gas cell
	$m_{\rm DM}$	$[M_{\odot}]$	4.5×10^5	7.5×10^6	5.9×10^{7}	
	$\epsilon_{ m gas,min}$	[pc]	74	185	370	
	$\epsilon_{\mathrm{DM,stars}}$	[pc]	288	740	1480	'Spatial resolution'
	CPU Time	[Mh]	130	18	35	

TNG50 Pls:

This is not cheap.

TNG50: internal structural detail of galaxies at the \sim 100-200pc scale

Pillepich & Nelson+ (201

... Slides on the TNG50 small-scale CGM ...

(work in progress)

TNG50-1 z=0.5 halo=8

TNG50-1 z=0.5 halo=8

Q: How much cold gas is there?

$$\mathrm{M_{halo}}\sim 10^{13.0}\,\mathrm{M_{sun}}$$

Q: What fraction of sightlines, at a given impact parameter, have a column of N_{MgII} or higher?

$$\mathrm{M_{halo}}\sim 10^{13.5}\,\mathrm{M_{sun}}$$

Q: Are the column densities and covering fractions (MgII, HI) reasonable vs. observations?

Contrast against the 'LRG-RDR' survey (Berg+19) = 21 LRGs with M* $\sim 10^{11.4}$ M_{sun} at z~0.5 with measured N_{HI}.

• For each observed pair, randomly select 100 analogs and measure sightlines at matched (b) around each.

Q: Are the column densities and covering fractions (MgII, HI) reasonable vs. observations?

Contrast against the 'LRG-RDR' survey (Berg+19) = 21 LRGs with $M^* \sim 10^{11.4} M_{sun}$ at z~0.5 with measured N_{HI} .

- For each observed pair, randomly select 100 analogs and measure sightlines at matched (b) around each.
- Compare PDFs of predicted N_{HI} versus each data point.
- Strong dichotomy: (i) halos with high-N_H centered distributions vs. (ii) halos with *always* lower columns.

conclusions

- the high Lagrangian resolution of TNG50 appears to resolve an interesting, dynamic cold-phase in the CGM of massive LRGs
- TNG50 gas resolution in such dense CGM structures is ~200-500 physical pc
- there is a large mass of cold HI/MgII gas at ~10⁴ K embedded in ~10⁷ K virialized hot halos, total cold-phase mass always increases with halo mass
- far from volume filling, size scale is ~ kpc
- not in pressure equilibrium
- strongly [over]magnetized, P_B >> P_{gas}
- sightlines will either see a [very] strong absorber, or no absorption at all

to-do

- origin (formation mechanism) & fate
- kinematics
- dichotomy: thermal or assembly state?
- statistical comparison to obs