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ABSTRACT

We have performed the largest ever particle simulation of a Milky Way-sized dark
matter halo, and present the most comprehensive convergence study for an individual
dark matter halo carried out thus far. We have also simulated a sample of 6 ultra-
highly resolved Milky-way sized halos, allowing us to estimate the halo-to-halo scatter
in substructure statistics. In our largest simulation, we resolve nearly 300,000 gravi-
tationally bound subhalos within the virialized region of the halo. Simulations of the
same object differing in mass resolution by factors up to 1800 accurately reproduce
the largest subhalos with the same mass, maximum circular velocity and position,
and yield good convergence for the abundance and internal properties of dark mat-
ter substructures. We detect up to four generations of subhalos within subhalos, but
contrary to recent claims, we find less substructure in subhalos than in the main halo
when regions of equal mean overdensity are compared. The overall substructure mass
fraction is much lower in subhalos than in the main halo. Extrapolating the main
halo’s subhalo mass spectrum down to an Earth mass, we predict the mass fraction
in substructure to be well below 3% within 100 kpc, and to be below 0.1% within the
Solar Circle. The inner density profiles of subhalos show no sign of converging to a
fixed asymptotic slope and are well fit by gently curving profiles of Einasto form. The
mean concentrations of isolated halos are accurately described by the fitting formula
of Neto et al. down to maximum circular velocities of 1.5 km s−1, an extrapolation over
some 5 orders of magnitude in mass. However, at equal maximum circular velocity,
subhalos are more concentrated than field halos, with a characteristic density that is
typically ∼ 2.6 times larger and increases with decreasing distance from halo centre.
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1 INTRODUCTION

A major puzzle in Cosmology is that the main matter com-
ponent in today’s Universe appears to be in the form of
a yet-undiscovered elementary particle whose contribution
to the cosmic density is more than 5 times that of ordi-
nary baryonic matter (e.g. Komatsu et al., 2008). This par-
ticle interacts extremely weakly with atoms and photons,
so that gravity alone has affected its distribution since very
early times. Recent observations have established a stan-
dard paradigm in which dark matter emerged from the early
Universe with negligible thermal velocities and a gaussian

⋆ E-mail: volker@mpa-garching.mpg.de

and scale-free distribution of density fluctuations. In this
“Cold Dark Matter” (CDM) hypothesis, quantum fluctua-
tions during a very early period of cosmic inflation deter-
mine the statistics of the dark matter distribution at early
epochs when the Universe was almost uniform (Guth, 1981;
Starobinsky, 1982; Hawking, 1982; Bardeen et al., 1983).
Galaxies form from these initial conditions through the con-
densation of gas at the centres of a hierarchically aggregating
population of quasi-equilibrium dark matter halos (White &
Rees, 1978; White & Frenk, 1991).

When the effects of the baryons can be neglected, the
nonlinear growth of dark matter structure is a well-posed
problem where both the initial conditions and the evolu-
tion equations are known. This is an N-body problem par
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excellence. The faithfulness of late-time predictions (which
must be confronted directly with observation to test the
paradigm) is limited purely by numerical technique and by
the available computing resources.

Over the past two decades, numerical simulations have
played a pivotal role in establishing the viability of the CDM
paradigm (e.g. Davis et al., 1985; Frenk et al., 1988; War-
ren et al., 1992; Gelb & Bertschinger, 1994; Cen et al.,
1994; Hernquist et al., 1996; Jenkins et al., 2001; Wamb-
sganss et al., 2004). They have led to the discovery of a
universal internal structure for dark matter halos (Navarro
et al., 1996, 1997, hereafter NFW), and they have supplied
precise predictions for the expected large-scale structure of
the Universe. The matter distribution on scales from ∼ 50
kpc to the size of the observable Universe and the galaxy
population predicted by hierarchical CDM scenarios have
been compared directly with a wide array of observations.
A recent example is the “Millennium Run” (Springel et al.,
2005), still one of the largest cosmological simulations ever
carried out, which followed the formation and evolution of
over 10 million galaxies by post-processing the stored sim-
ulation outputs (Croton et al., 2006; Bower et al., 2006).
So far, the ΛCDM paradigm has passed these tests success-
fully, particularly those that consider the large-scale matter
distribution.

Given this success in reproducing the large-scale struc-
ture of the Universe, it is important to test CDM predictions
also on smaller scales, not least because these are sensitive
to the nature of the dark matter. Indeed, a number of seri-
ous challenges to the paradigm have emerged on the scale
of individual galaxies and their central structure. The reali-
sation that CDM halos have cuspy dark matter density pro-
files led to a fierce debate about whether these are consistent
with the rotation curves observed for low surface brightness,
apparently dark matter dominated galaxies (Flores & Pri-
mack, 1994; Moore, 1994; McGaugh & de Blok, 1998; de
Blok et al., 2001; Hayashi et al., 2004; Hayashi & Navarro,
2006). The abundance of small dark matter subhalos pre-
dicted within CDM halos has also drawn much attention
(Klypin et al., 1999; Moore et al., 1999a). The total number
is much larger than the number of known satellite galaxies
surrounding the Milky Way, even accounting for the many
recently discovered faint systems. It is still unclear whether
this reflects an absence of the predicted low mass objects or
merely the fact that no stars were able to form within them.
The issue of dark matter substructure within halos is made
more urgent by the prospect of observing dark matter parti-
cles in the near future, either by their annihilation radiation
(e.g. Bergström et al., 1998), or through direct detection
in experiments here on Earth (reviewed, e.g., by Gaitskell,
2004). For both, a precise and quantitative understanding of
the small-scale dark matter distribution within our Galaxy
is needed.

Our Aquarius Project addresses these questions by
studying the highly nonlinear structure of Galaxy-sized
CDM halos in unprecedented detail using state-of-the art
numerical simulations. We are particularly interested in the
inner regions of these halos and of their substructures, where
the density contrast exceeds 106 and the astrophysical con-
sequences of the nature of dark matter may be most clearly
apparent. Quantifying such structure reliably through simu-
lation is an acute challenge to numerical technique. In order

to address this challenge, we use a newly developed ver-
sion of our parallel simulation code, GADGET-3 (based on
Springel et al., 2001b; Springel, 2005), which allows us to
cover an unprecedented dynamic range at high numerical
accuracy. We carefully validate our simulation techniques
and establish their range of numerical convergence through
systematic convergence studies, thereby building confidence
in the reliability of our results.

In order to evaluate the scatter in structural properties
between halos, we have simulated six different systems at
high resolution, each having between 160 and 224 million
particles within r50, the radius with mean enclosed over-
density 50 times the critical value.⋆ Each of these simula-
tions is better resolved than any previously published high-
resolution halo simulation except the very recent ‘Via Lactea
II’ run of Diemand et al. (2008) which has 470 million par-
ticles within r50. For one of our halos, we have increased
the resolution by a further factor of 8, pushing the particle
number within r50 to 1.47 billion. The gravitational soften-
ing length of this largest run is just 20.5 pc. We collectively
refer to this suite of simulations as the Aquarius Project.

In the present paper, we describe our simulation tech-
niques and analyze a number of basic properties of our z = 0
halos. We focus in particular on the abundance of substruc-
tures, their radial distribution, and their internal density
profiles. We also give results for the concentration of sub-
structures, and for the fraction of the mass they contain at
different radii. In a companion paper (Springel et al., 2008),
we study implications for the detectability of dark matter
annihilation within the Milky Way’s dark matter halo, and
in Navarro et al. (2008) we study the structure of the central
density cusps of the main halos. Future papers will study the
evolution of our halos and their substructure.

This paper is organized as follows. In Section 2, we in-
troduce our simulation set and describe our numerical tech-
niques. The abundance of dark matter substructures and
their radial distribution within our halos are analyzed in
Section 3. Then, in Section 4, we turn to an analysis of the
abundance of substructure within subhalos. In Section 5, we
consider the density profiles of subhalos and their concen-
trations. Finally, we summarize our conclusions in Section 6.

2 SIMULATION SET AND NUMERICAL

TECHNIQUES

All our simulations follow halo formation within a periodic
cube of side 100 h−1Mpc ≃ 137 Mpc in a cosmology with pa-
rameters Ωm = 0.25, ΩΛ = 0.75, σ8 = 0.9, ns = 1, and Hub-
ble constant H0 = 100 h km s−1 Mpc−1 = 73 km s−1 Mpc−1.
These cosmological parameters are the same as used in the
Millennium Simulation project, and are consistent with the
current set of cosmological constraints within their uncer-
tainties, in particular those from the WMAP 1- and 5-year
data analyses.

⋆ We use this unconventional outer radius for our halos, rather
than the standard r200, to facilitate comparison with Diemand
et al. (2007a, 2008) who quote results for their Via Lactea simu-

lations within r50 although they refer to this radius as “r200”.
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Name mp ǫ Nhr Nlr M200 r200 M50 r50 N50

[M⊙] [pc] [M⊙] [kpc] [M⊙] [kpc]

Aq-A-1 1.712 × 103 20.5 4,252,607,000 144,979,154 1.839 × 1012 245.76 2.523 × 1012 433.48 1,473,568,512
Aq-A-2 1.370 × 104 65.8 531,570,000 75,296,170 1.842 × 1012 245.88 2.524 × 1012 433.52 184,243,536

Aq-A-3 4.911 × 104 120.5 148,285,000 20,035,279 1.836 × 1012 245.64 2.524 × 1012 433.50 51,391,468
Aq-A-4 3.929 × 105 342.5 18,535,972 634,793 1.838 × 1012 245.70 2.524 × 1012 433.52 6,424,399
Aq-A-5 3.143 × 106 684.9 2,316,893 634,793 1.853 × 1012 246.37 2.541 × 1012 434.50 808,479

Aq-B-2 6.447 × 103 65.8 658,815,010 80,487,598 8.194 × 1011 187.70 1.045 × 1012 323.12 162,084,992
Aq-B-4 2.242 × 105 342.5 18,949,101 648,874 8.345 × 1011 188.85 1.050 × 1012 323.60 4,683,037

Aq-C-2 1.399 × 104 65.8 612,602,795 78,634,854 1.774 × 1012 242.82 2.248 × 1012 417.09 160,630,624
Aq-C-4 3.213 × 105 342.5 26,679,146 613,141 1.793 × 1012 243.68 2.285 × 1012 419.36 7,110,775

Aq-D-2 1.397 × 104 65.8 391,881,102 79,615,274 1.774 × 1012 242.85 2.519 × 1012 433.21 180,230,512
Aq-D-4 2.677 × 105 342.4 20,455,156 625,272 1.791 × 1012 243.60 2.565 × 1012 435.85 9,579,672

Aq-E-2 9.593 × 103 65.8 465,905,916 74,119,996 1.185 × 1012 212.28 1.548 × 1012 368.30 161,323,676
Aq-E-4 2.604 × 105 342.5 17,159,996 633,106 1.208 × 1012 213.63 1.558 × 1012 369.14 5,982,797

Aq-F-2 6.776 × 103 65.8 414,336,000 712,839 1.135 × 1012 209.21 1.517 × 1012 365.87 223,901,216
Aq-F-3 2.287 × 104 120.5 122,766,400 712,839 1.101 × 1012 207.15 1.494 × 1012 363.98 65,320,572

Table 1. Basic parameters of the Aquarius simulations. We have simulated 6 different halos, each at several different numerical resolutions.

The leftmost column gives the simulation name, encoding the halo (A to F), and the resolution level (1 to 5). mp is the particle mass,
ǫ is the Plummer equivalent gravitational softening length, Nhr is the number of high resolution particles, and Nlr the number of low
resolution particles filling the rest of the volume. M200 is the virial mass of the halo, defined as the mass enclosed in a sphere with

mean density 200 times the critical value. r200 gives the corresponding virial radius. We also give the mass and radius for a sphere of
overdensity 50 times the critical density, denoted as M50 and r50. Note that this radius encloses a mean density 200 times the background

density; in some studies (e.g. Diemand et al., 2007a) M50 and r50 have been defined as virial mass and radius. Finally, N50 gives the
number of simulation particles within r50.

2.1 Setting the initial conditions

The linear power spectrum used for making the initial con-
ditions is based on a transfer function made by CMBFAST

(v4.5.1, Seljak & Zaldarriaga, 1996) with Ωbaryon = 0.045.
The transfer function was evaluated at z = 0 where the
CDM and baryon transfer functions are virtually identical
for wavenumbers k up to log10(kh/Mpc) = 2.5. For higher
wavenumbers the effects of pressure are important for the
baryons and are reflected in a feature present also in the
CDM transfer function. Given that our simulations model
only a CDM component and cannot account for the sepa-
rate evolution of the baryons, we have chosen to ignore this
baryon induced feature for our CDM power spectrum and
have instead created a smooth composite transfer function
(explained in detail below) which lacks this feature. In prac-
tice, for the Aquarius simulations, the difference between
using our composite transfer function and the CMBFAST

transfer function is relatively modest. The size of the differ-
ence can be gauged by considering the fractional change in
the rms linear density fluctuations for a spherical top-hat
filter enclosing a mass of mean density corresponding to 32
particles (our resolution limit in the subsequent analyses).
For our highest resolution simulation the rms using our com-
posite transfer function is less than 2% above that using the
CMBFAST CDM transfer function. For all other simulations
the difference is even smaller.

Our composite transfer function was formed as follows.
It was set equal to the CMBFAST transfer function for
log10(kh/Mpc) < 1, and equal to an analytic form based
on the CDM only transfer function of Bardeen et al. (1986,
hereafter BBKS) for log10(kh/Mpc) > 2. Over the inter-

mediate range the composite transfer function is given by
the linear combination of (1 − w) times the CMBFAST and
w times the BBKS transfer function, where the weighting
function w changes smoothly from 0 to 1. By using a value
of Γ = 0.16 for the shape parameter in the BBKS formula
and scaling the overall amplitude it proved possible to match
the amplitudes of the CMBFAST and BBKS functions every-
where in the transition region, 1 < log10(kh/Mpc) < 2, to
better than 0.5%, with the result that the overall transfer
function is very smooth.

We selected target halos for resimulation from a par-
ent simulation carried out at homogeneous resolution with
9003 particles in this same box. We targeted halos of roughly
Milky Way mass and without a massive close neighbour at
z = 0. We also checked that semi-analytic modelling ap-
plied to our target halos predicated them to host late-type
galaxies. Otherwise our selection was random. New initial
conditions for the selected objects were then constructed
by identifying the Lagrangian region from which each halo
formed. The high resolution region, which has an ‘amoeba’-
like shape, was defined as the union of a set of small iden-
tical cubes joined face to face covering the whole of the La-
grangian region and forming a simply connected volume.
Within this region the mass distribution was represented
by a much larger number of lower mass particles. On mak-
ing the initial conditions, additional small-scale power was
added to the high resolution region as dictated by the higher
local particle Nyquist frequency. More distant regions were
sampled with progressively more massive particles, but re-
taining sufficient resolution to ensure an accurate represen-
tation of the tidal field at all times. The initial displace-
ments were imprinted using the Zeldovich approximation,
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Figure 1. Measured power spectrum (dimensionless variance
∆2(k) ∼ k3P (k) per natural log interval) in our highest reso-

lution ‘zoom’ initial conditions, Aq-A-1, linearly extrapolated to
the values expected at z = 0. The lower red points show the
power spectrum measured in our homogeneously sampled parent

simulation, shifted down by one dex for clarity. The upper red cir-
cles show our measurement for the zoom initial conditions for the
whole box, while cyan and magenta circles show measurements
from smaller boxes centred within the high-resolution region. The

solid black lines show the linear theory input spectrum. The ver-
tical dashed line on the right marks the Nyquist frequency of the
high-resolution region, while the left vertical line is the joining
point between the long wavelength modes from the parent simu-

lation and the high frequency modes added to the high resolution
cube.

and a ‘glass-like’ uniform particle load (White, 1996) was
used within the high-resolution regions of all our initial con-
ditions. We also invested particular care to guarantee that
all our final halos are unaffected by contamination by heav-
ier boundary particles. In fact, all our halos are free of any

boundary particles within the radius r50, except for sim-
ulations Aq-E-2, Aq-F-2, and Aq-F-3, where 71, 9, and 3
heavier particles are found within this radius, respectively,
corresponding to a fraction <∼ 10−5 of the total mass within
this radius. Typically, about 30% of the high-resolution par-
ticles in the new initial conditions end up in the virialized
region of the final halo.

In setting up these zoomed initial conditions, all
power from the parent simulation is deleted beyond some
wavenumber which is smaller than the Nyquist wavenum-
ber of the parent simulation, but substantially larger than
the fundamental wavenumber of the cube enclosing the high
resolution region in which we generate the additional high
frequency waves. The latter replace the waves deleted from
the fluctuation field of the parent simulation and extend its
power spectrum up to the Nyquist frequency corresponding
to the mean interparticle separation in the high-resolution
region. When we create a series of simulations of the same

object at differing mass resolution (i.e. with different parti-
cle masses in the high resolution region) we are careful to
ensure that all the waves used to create a lower resolution
simulation are present with identical amplitude and phase
in all higher resolution simulations. This means that every
object which forms in the lower resolution simulation should
also be present with identical mass and position in its higher
resolution counterparts. This allows us to make detailed con-
vergence tests on the properties of every nonlinear object in
our simulations, not just on the main halo.

In Figure 1, we show the power spectrum as measured
from the initial conditions of our highest resolution resimu-
lation, Aq-A-1 from Table 1. All the measurements are made
using a 10003 Fourier transform using a cloud-in-cell assign-
ment scheme and taking into account for each mode the
expected smoothing effect of the assignment scheme. Mea-
suring the power spectrum accurately however requires a
further measure. Even in the absence of the imposed per-
turbations, the unperturbed particle distribution has some
measurable power. This power in a discrete particle repre-
sentation, unlike a truely uniform mass distribution, does
not grow by gravitational instability. Over most scales this
extra power is negligible compared to that introduced when
the density perturbations are added by displacing the parti-
cles which we wish to measure. However at scales approach-
ing the particle Nyquist frequency the contribution from the
unperturbed particle distribution starts to become signifi-
cant compared to the imposed power. To allow for this effect,
which would otherwise lead to an overestimate of the input
power, the values for all the points plotted are computed
by differencing the power of the perturbed and unperturbed
particle positions.

In Figure 1 the lower sequence of red filled circles
shows the measured power spectrum (linearly extrapolated
to z = 0 and offset by exactly one dex for clarity) from the
parent 9003 particle simulation, plotted down to the short-
est wavelength included in the refined initial conditions. The
two black curves show the theoretical linear power spectrum,
discussed above, with the upper curve extrapolated to z = 0
and the lower curve shifted down from it by one dex. The
power spectrum of the parent simulation is evidently a very
good match to the theoretical power spectrum except at
low k where close agreement is not expected because only a
few modes contribute. The upper red circles show the power
spectrum measured in the initial conditions of the zoom sim-
ulation (linearly extrapolated to z = 0). The most massive
particles in the refined initial conditions have a mass 1/413

of the entire 100 h−1Mpc box. As the Nyquist frequency for
particles of this mass corresponds to log(k h Mpc−1) = 0.11,
only points to the left of this limit are plotted. The cyan
circles show the power spectrum measured from a box of
side length 6.4 h−1Mpc centred on the high resolution re-
gion. The masses of the particles in this region vary, with
the most massive particles having a mass of ∼ 7.23 × 10−8

of the region within which high-frequency power is added.
(The latter is cubic with a side length of 7.06 h−1Mpc.) The
Nyquist frequency corresponding to the most massive parti-
cles is here log(k h Mpc−1) = 2.03, and the cyan points are
shown only to the left of this limit.

Finally, the magenta circles show the average power
spectrum measured from eight boxes of side-length
1 h−1Mpc inside the central high resolution region, where
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all the particles are of the same mass. The largest possible
cube that can be extracted where all the particles have the
same mass is about 2.4 h−1Mpc on a side. A 10003 Fourier
transform is not large enough to make an accurate measure-
ment of the power spectrum over this size of cube because
the particle and Fourier mesh Nyquist frequencies are very
close. Instead we placed 8 non-overlapping 1 h−1Mpc cubes
inside this volume. Averaging the eight regions reduces the
expected scatter at low wavenumber, but makes no signif-
icant difference compared to a single measurement at high
wave-numbers. Again the points are only plotted up to their
Nyquist frequency, which is marked by the rightmost ver-
tical dashed line. The leftmost vertical dashed line marks
the joining point in the high-resolution cube between the
long-wavelength waves from the parent simulation and the
high-frequency waves in the high-resolution cube. The join-
ing point corresponds to about 15 waves across the high-
resolution cube.

These measurements of the power spectrum of our
initial conditions show that we clearly achieve an excel-
lent match to the desired linear input spectrum over many
decades in spatial scale. We stress that such tests of the ini-
tial conditions are essential, as their quality is obviously of
paramount importance for the accuracy of the evolved simu-
lations. Note that in the following, “high-resolution region”
refers to the amoeba-shaped region where all the particles
have the same mass rather than to the region to which high
frequency waves are added (which is larger). Similarly, the
low-resolution region is everything outside the amoeba.

2.2 The Aquarius simulation suite

In Table 1, we provide an overview of the basic numeri-
cal parameters of our simulations. This includes a symbolic
simulation name, the particle mass in the high-resolution
region, the gravitational softening length, the total particle
numbers in the high- and low-resolution regions, as well as
various characteristic masses and radii for the final halos,
and the corresponding particle numbers. Our naming con-
vention is such that we use the tags “Aq-A” to “Aq-F” to
refer to simulations of the six Aquarius halos. An additional
suffix “1” to “5” denotes the resolution level. “Aq-A-1” is
our highest resolution calculation with ∼ 1.5 billion halo
particles. We have level 2 simulations of all 6 halos, corre-
sponding to 160 to 224 million particles per halo.

We kept the gravitational softening length fixed in co-
moving coordinates throughout the evolution of all our ha-
los. The dynamics is then governed by a Hamiltonian and the
phase-space density of the discretized particle system should
be strictly conserved as a function of time (Springel, 2005),
modulo the noise introduced by finite force and time integra-
tion errors. Timestepping was carried out with a kick-drift-
kick leap-frog integrator where the timesteps were based on
the local gravitational acceleration, together with a conser-
vatively chosen maximum allowed timestep for all particles.

We define the virial mass M∆ and viral radius r∆ as the
mass and radius of a sphere that encloses a mean density
∆× ρcrit, where ρcrit is the critical density. Different choices
for ∆ are used in the literature. The most common ones are
(1) a fixed value of ∆ = 200 as in NFW’s original work, (2)
a value of ∆ ∼ 178Ω0.45

m based on a generalization of the
spherical top-hat collapse model to low density cosmologies

(Eke et al., 1996; Bryan & Norman, 1998), or (3) a value
of ∆ = 200Ωm(z), which corresponds to a fixed overdensity
relative to the background density.

We will frequently give results for the radius according
to convention (3), for which ∆ = 200 Ωm = 50 at z = 0,
simply because this yields the largest radius and hence the
largest number of substructures, which improves statistics.
The corresponding radius is designated as r50, while r200

refers to the radius that encloses an overdensity of 200 with
respect to the critical density, as is customary in the liter-
ature (except for Diemand et al., 2007a, and collaborators,
who use r200 to refer to a radius that encloses 200 times the
mean density, which is equivalent to r50 in our notation).

2.3 Integration technique

All our simulations were started at redshift z = 127, and
were evolved with a new parallel TreePM code GADGET-3

written especially for the Aquarius project. This code offers
much better scalability to large numbers of compute cores as
well as higher basic speed than its parent code GADGET-2

(Springel, 2005). The gravitational field on large scales is
calculated with a particle-mesh (PM) algorithm, while the
short-range forces are delivered by a tree-based hierarchical
multipole expansion, such that a very accurate and fast grav-
itational solver results. The scheme combines the high spa-
tial resolution and relative insensitivity to clustering of tree
algorithms with the unmatched speed and accuracy of the
PM method to calculate the long range gravitational field.
We note that achieving our force resolution with a single
mesh in a standard PM approach would require a grid with
(107)3 cells – storing such a mesh would require several mil-
lion petabytes. This illustrates the enormous dynamic range
we are aiming for with our simulations.

In fact, the numerical challenge of the calculations is
substantial. One challenge simply reflects the large dynamic
range involved: gravitational timescales are inversely propor-
tional to the square root of the density, so simulating a CDM
halo means dealing with a system where different regions
evolve on timescales which may differ by factors of thou-
sands. A code with spatially-dependent, adaptive timestep-
ping is mandatory; otherwise the most rapidly evolving re-
gions – which usually include only a tiny fraction of the
mass – force timesteps so short that the calculation grinds
to a halt. A second challenge stems from the highly clus-
tered spatial distribution of matter and affects, in particu-
lar, the scalability of parallel algorithms. A CDM halo is a
nearly monolithic, highly concentrated structure with a well-
defined centre. There is no obvious geometrical decomposi-
tion which can separate it into the large number of compu-
tationally equivalent domains required for optimal exploita-
tion of the many processors available in high-performance
parallel architectures. In our highest resolution calculation,
the clustering is so extreme that far more than a billion par-
ticles (amounting to about one third of all particles in the
simulation) collect in a region that encompasses less than
10−8 of the simulated volume. In addition, gravity couples
the dynamics of matter throughout the halo and beyond,
requiring efficient communication between all parts of the
simulated region.

It is clear that parallelization of such calculations for
distributed memory machines is difficult, yet is mandatory
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Figure 2. The top left panel shows the projected dark matter density at z = 0 in a slice of thickness 13.7 Mpc through the full box
(137 Mpc on a side) of our 9003 parent simulation, centred on the ‘Aq-A’ halo that was selected for resimulation. The other five panels
show this halo resimulated at different numerical resolutions. In these panels, all particles within a cubic box of side-length 2.5 × r50

centred on the halo are shown. The image brightness is proportional to the logarithm of the squared dark matter density S(x, y)
projected along the line-of-sight, and the colour hue encodes the local velocity dispersion weighted by the squared density along the
line-of-sight. We use a two-dimensional colour table (as shown on the left) to show both of these quantities simultaneously. The colour

hue information is orthogonal to the brightness information; when converted to black and white, only the density information remains,
with a one-dimensional grey-scale colour map as shown on the left. The circles mark r50.
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Figure 3. Projected dark matter density in our six different high-resolution halos at z = 0, at the ‘2’ resolution level. In each panel,
all particles within a cubic box of side length 2.5 × r50 centred on the halo are shown, and the circles mark the radius r50. The image

brightness is proportional to the logarithm of the squared dark matter density, and the colour hue encodes the local particle velocity
dispersion, with the same colour map as in Figure 2.

to make them feasible on today’s supercomputers. We have
carried out our most expensive calculation, the Aq-A-1 run,
on the Altix 4700 supercomputer of the Leibniz Computing
Center (LRZ) in Garching/Germany, using 1024 CPUs and
about 3 TB of main memory. The calculation took more than
3.5 million CPU hours to carry out about 101400 timesteps
that involved 6.72×1013 force calculations in total. We have
stored 128 simulation dumps for this calculation, amounting
to a data volume of about 45 TB. The other simulations of
the Aquarius Project were in part calculated on the LRZ
system, and in part on other supercomputers across Eu-
rope. These were the COSMA computer at Durham Univer-
sity/UK, the Bluegene/L system STELLA of the LOFAR
consortium in Groningen/Netherlands, and a Bluegene/P
system of the Max-Planck Computing Center in Garching.
For all these simulations we also stored at least 128 outputs,
but for Aq-A-2 and Aq-A-4 we kept 1024 dumps, and for
Aq-A-3 half this number. This provides exquisite time reso-
lution for studies of the detailed formation history of halos
and the evolution of their substructure. In the present study,
however, we focus on an analysis of the objects at z = 0.

2.4 A first view of the simulations

In Figures 2 and 3, we show images† of the dark matter
distribution in our 6 high resolution halos at redshift z = 0.
The brightness of each pixel is proportional to the logarithm
of the squared dark matter density projected along the line-
of-sight,

S(x, y) =

∫

ρ2(r) dz, (1)

while the colour hue encodes the mean dark matter velocity
dispersion, weighted as

σ(x, y) =
1

S(x, y)

∫

σloc(r) ρ2(r) dz. (2)

Here the local dark matter density ρ(r) and the local veloc-
ity dispersion σloc(r) of the particles are estimated with an
SPH kernel interpolation scheme based on 64 neighbours.
We use a two-dimensional colour-table (see Fig. 2) in which
the information about the local dark matter ‘temperature’ is

† Further images and videos of the formation process of the halos

are available at http://www.mpa-garching.mpg.de/aquarius
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Name Vmax rmax δV c∗
NFW

zform Nsub fcumul
sub

[km s−1] [kpc]

Aq-A-1 208.75 28.35 2.035 × 104 16.11 1.93 297791 13.20 %
Aq-A-2 208.49 28.14 2.060 × 104 16.19 1.93 45024 12.16 %

Aq-A-3 209.22 27.88 2.114 × 104 16.35 1.93 13854 11.34 %
Aq-A-4 209.24 28.20 2.067 × 104 16.21 1.93 1960 9.68 %
Aq-A-5 209.17 28.55 2.015 × 104 16.04 1.93 299 8.64 %

Aq-B-2 157.68 40.15 5.788 × 103 9.72 1.39 42537 10.54 %
Aq-B-4 159.03 44.31 4.834 × 103 9.02 1.39 1614 8.26 %

Aq-C-2 222.40 32.47 1.761 × 104 15.21 2.23 35022 7.17 %
Aq-C-4 223.20 33.63 1.654 × 104 14.84 2.23 1972 6.02 %

Aq-D-2 203.20 54.08 5.299 × 103 9.37 1.51 47014 13.06 %
Aq-D-4 204.47 55.76 5.046 × 103 9.18 1.51 3116 10.67 %

Aq-E-2 179.00 55.50 3.904 × 103 8.26 2.26 42725 10.75 %
Aq-E-4 182.68 54.59 4.202 × 103 8.52 2.26 2024 7.53 %

Aq-F-2 169.08 42.67 5.892 × 103 9.79 0.55 52503 13.39 %
Aq-F-3 174.05 43.76 5.937 × 103 9.82 0.55 12950 9.15 %

Table 2. Basic structural properties of the main halos in our various simulations. The leftmost column gives the simulation name,

Vmax is the maximum circular velocity, rmax is the radius where this maximum is reached, δV gives the characteristic density contrast
based on the peak of the circular velocity curve, while c⋆

NFW
is the same value converted to an equivalent NFW concentration under the

assumption that the halo is reasonably well fit by an NFW profile. zform gives the formation redshift of the halo, defined as the earliest

epoch at which the M200 mass of the main halo progenitor exceeds half its final value. Finally, Nsub gives the total number of subhalos
that we resolve inside r50, and fcumul

sub
is their total mass fraction relative to all the mass inside r50.

orthogonal to the density information; conversion of the im-
ages into grey-scale eliminates the velocity information but
leaves the density information intact, with the latter being
proportional to the dark matter annihilation luminosity.

Looking at these images it is clear that our halos are
filled with a sea of dark matter substructures of many dif-
ferent sizes. Figure 2 shows that these repeat closely, as they
should, between simulations of the same object at different
resolution, albeit at slightly different positions. As we will
show later in more detail, there are even substructures inside
subhalos. In fact, up to four such generations are resolved
by our highest resolution calculation, the Aq-A-1 version of
the ‘A’ object. It is clear that an important task in ana-
lyzing this complex phase-space structure lies in finding the
gravitationally bound substructures that orbit within the
virialized regions of the halos.

We address this complex problem with our SUBFIND

algorithm (Springel et al., 2001a) which finds substructures
using a topological excursion set method. Based on local
dark matter density estimates calculated with the SPH ker-
nel interpolation approach for all high resolution particles,
we first identify a set of subhalo candidates, which are lo-
cally overdense structures found within a given input group
of particles identified with a FOF (friends-of-friends) group
finder (Davis et al., 1985). These are then subjected to
a gravitational unbinding procedure that iteratively elimi-
nates all unbound particles. Provided more than 20 bound
particles remain, we record the particle group as a genuine
subhalo in our group catalogue. For each subhalo, we calcu-
late a number of physical properties such as the maximum
circular velocity, spin and velocity dispersion, and we store
the particles in order of the gravitational binding energy,
which is useful for tracking subhalos between simulation out-
puts at different times. We have fully parallelized the SUB-

FIND and FOF algorithms for distributed memory systems
and inlined them in our simulation code GADGET-3. Thus
group-finding can be done on the fly during the simulation,
if desired. This is often advantageous as these calculations
are computationally quite intense and require equally large
memory as the dynamical simulation code itself.

The density values used by SUBFIND were based on
SPH density estimates ρi with smoothing lengths hi that
satisfy the implicit equation (4π/3)h3

i ρi = 64 mp (Springel
& Hernquist, 2002), where mp is the particle mass and an
effective neighbour number of 64 was adopted. In order to
test the sensitivity of inferred dark matter annihilation rates
to the dark matter density estimator (see Springel et al.,
2008), we have also calculated densities based on a three-
dimensional Voronoi tessellation of the simulation volume,
where the density estimate was defined as the mass of a
particle divided by its Voronoi volume. To construct the
Voronoi tessellation, we have written a parallel code that
can rapidly calculate the Delaunay triangulation, and from
it its topological dual, the Voronoi tessellation.

As an illustration of the extreme dynamic range of our
simulation set and the degree of numerical convergence be-
tween the different resolutions, we show in Figure 4 the
spherically averaged density profiles for the five simulations
of the ‘Aq-A’ halo. In each case, we draw the measured den-
sity profile as a thick solid line down to the smallest ra-
dius where convergence is expected based on the criteria of
Power et al. (2003), and we continue the measurements as
thin lines for scales where the force law is unaffected by the
gravitational softening. Power et al. (2003) have shown that
convergence of the density profile at a given radius requires
that the two-body relaxation time at this radius be larger
than the Hubble time. This condition can be cast into the
form
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Figure 4. Spherically averaged density profile of the Aq-A halo

at z = 0, at different numerical resolutions. Each of the pro-
files is plotted as a thick line for radii that are expected to be
converged according to the resolution criteria of Power et al.

(2003). These work very well for our simulation set. We continue
the measurements as thin solid lines down to 2 ǫ, where ǫ is the
Plummer-equivalent gravitational softening length in the notation

of Springel et al. (2001b). The dotted vertical lines mark the scale
2.8 ǫ, beyond which the gravitational force law is Newtonian. The
mass resolution changes by a factor of 1835 from the lowest to the
highest resolution simulation in this series. Excellent convergence

is achieved over the entire radial range where it is expected.

√
200

8

N(r)

ln N(r)

(

ρ(r)

ρcrit

)−1/2

≥ 1, (3)

where N(r) is the number of particles inside r, and ρ(r)
is the average enclosed density. Note that this form of the
convergence criterion is in principle also applicable to dark
matter subhalos (see below), but in this regime it has not
been empirically validated so far.

We find that there is very good agreement between the
densities and enclosed masses for all radii larger than the
convergence radius estimated in this way. The quality of
this convergence is impressively demonstrated by Figure 5,
where we show the local logarithmic slope of the density
profile, for the radial range where convergence is expected
according to the Power criterion. There are some large fluc-
tuations of the local slope in the outer parts of the halo,
caused by substructures, which are remarkably well repro-
duced at the different resolutions. In the more relaxed inner
regions, the local logarithmic slope varies smoothly with ra-
dius. In particular, it becomes gradually shallower towards
the centre, as suggested by Navarro et al. (2004). In fact,
the local slope becomes clearly shallower than −1 at the in-
nermost converged radius. This has important implications
for the structure of the central cusp which will be analyzed
in full detail in Navarro et al. (2008, in preparation). For
the rest of this paper, we focus on an analysis of the dark
matter substructures.
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Figure 5. Local logarithmic slope of the density profiles as a func-

tion of radius for the Aq-A halo simulated at different numerical
resolution. Only the radial region that should be converged ac-
cording to the criteria of Power et al. (2003) is shown. Note that

the large fluctuations in the outer parts are caused by substruc-
tures but nevertheless reproduce well between simulations. In this
regime, we expect significant halo-to-halo scatter.

3 SUBSTRUCTURE ABUNDANCE AND

SPATIAL DISTRIBUTION

In this section, we investigate the abundance of dark matter
substructures as measured by the SUBFIND algorithm. All
our substructures consist of particle groups that are gravi-
tationally self-bound and are overdense with respect to the
local background. Every simulation particle can be part only
of one subhalo, but we are able to detect substructure within
substructure (see below). We count substructures down to
a minimum of 20 bound particles.

3.1 Subhalo counts and substructure mass

fraction

In Figure 6, we show the differential abundance of subhalos
by mass (i.e. the number of subhalos per unit mass inter-
val) in our ‘A’ halo within r50, and we compare results for
simulations of the same object at different mass resolution.
For masses above ∼ 5 × 108 M⊙, the number of subhalos is
small and large halo-to-halo scatter may be expected (see
below). However, for lower masses a smooth mass spectrum
is present that is well described by a power law over many
orders of magnitude. Multiplication by M2

sub compresses the
vertical scale drastically, so that the slope of this power-law
and deviations from it can be better studied. This is shown
in the bottom panel of Figure 6. We see that resolution
effects become noticeable as a reduction in the number of
objects at masses below a few hundred particles, but for
sufficiently well resolved subhalos, very good convergence is
reached. There is good evidence from the fully converged
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Figure 6. Differential subhalo abundance by mass in the ‘A’ halo

within the radius r50. We show the count of subhalos per logarith-
mic mass interval for different resolution simulations of the same

halo. The bottom panel shows the same data but multiplied by a
factor M2

sub
to compress the vertical dynamic range. The dashed

lines in both panels show a power-law dN/dM ∝ M−1.9. For each
of the resolutions, the vertical dotted lines in the lower panel mark

the masses of subhalos that contain 100 particles.

part of the differential mass function that it exhibits a true
power-law behaviour, and that the slope of this power law is
shallower than −2, though not by much. Our results are best
fit by a power law dN/dM ∝ M−1.9, the same slope found
by Gao et al. (2004), but significantly steeper than Helmi
et al. (2002) found for their rich cluster halo. The exact value
obtained for the slope in a formal fit varies slightly between
−1.87 and −1.93, depending on the mass range selected for
the fit; the steepest value of −1.93 is obtained when the fit
is restricted to the mass range 106 M⊙ to 107 M⊙ for the
Aq-A-1 simulation.

The small tilt of the slope n = −1.9 away from −2
is quite important. For n = −2, the total predicted mass
in substructures smaller than a given limit m0 would be
logarithmically divergent when extrapolated to arbitrarily
small masses. If realized, this might suggest that there is no
smooth halo at all, and that ultimately all the mass is con-
tained in subhalos. However, even for the logarithmically di-
vergent case the total mass in substructures does not become
large enough for this to happen, because a sharp cut-off in
the subhalo mass spectrum is expected at the thermal free-
streaming limit of the dark matter. Depending on the spe-
cific particle physics model, this cut-off lies around an Earth
mass, at ∼ 10−6 M⊙, but could be as low as 10−12 M⊙ in
certain scenarios (Hofmann et al., 2001; Green et al., 2004).

Our measured mass function for the ‘A’ halo is well
approximated by

dN

dM
= a0

(

M

m0

)n

, (4)

with n = −1.9, and an amplitude of a0 = 8.21× 107/M50 =
3.26 × 10−5 M−1

⊙ for a pivot point of m0 = 10−5 M50 =
2.52 × 107 M⊙. This means that the expected total mass in
all subhalos less massive than our resolution limit mres is

Mtot(< mres) =

∫ mres

mlim

M
dN

dM
dM =

a0

n + 2

mn+2
res − mn+2

lim

mn
0

,(5)

where mlim is the thermal dark matter limit. For mlim → 0
and our nominal subhalo resolution limit of mres = 3.24 ×
104 M⊙ in the Aq-A-1 simulation, this gives Mtot = 1.1 ×
1011 M⊙, corresponding to about 4.5% of the mass of the
halo within r50. While non-negligible, this is considerably
smaller than the total mass in the substructures that are al-

ready resolved by the simulation. The latter is 13.2% of the
mass within r50 for the Aq-A-1 simulation. We hence con-
clude that despite the very broad mass spectrum assumed in
this extrapolation, the total mass in subhalos is still domi-
nated by the most massive substructures, and an upper limit
for the total mass fraction in subhalos is ∼ 18% within r50

for the ‘Aq-A’ halo.
We caution, however, that the extrapolation to the ther-

mal limit extends over 10 orders of magnitude! This is il-
lustrated explicitly in Figure 7, where we show the mass
fraction in substructures above a given mass limit, com-
bining the direct simulation results with the extrapolation
above. We also include an alternative extrapolation in which
a steeper slope of −2 is assumed. In this case, the total
mass fraction in substructures would approximately double
if the thermal limit lies around one Earth mass. If it is much
smaller, say at mlim ∼ 10−12 M⊙, the mass fraction in sub-
structure could grow to ∼ 50% within r50, still leaving room
for a substantial smooth halo component. Notice, however,
that within 100 kpc even this extreme extrapolation results
in a substructure mass fraction of only about 5%. Most of
the mass of the inner halo is smoothly distributed.

Within r50 the mass fraction in resolved substructures
varies around 11% for our 6 simulations at resolution level
2, each of which has at least 160 million particles in this
region. Table 2 lists these numbers, which are 12.2% (Aq-A-
2 simulation), 10.5% (Aq-B-2), 7.2% (Aq-C-2), 13.1% (Aq-
D-2), 10.8% (Aq-E-2), and 13.4% (Aq-F-2). This gives an
average of 11.2% within r50 down to the relevant subhalo
mass resolution limit, ∼ 2 × 105 M⊙. This is similar to the
substructure mass fractions found by earlier work on galaxy
cluster halos (e.g. Ghigna et al., 1998; Springel et al., 2001a;
De Lucia et al., 2004) and Galaxy-sized halos (Stoehr et al.,
2003) once the different limiting radius (r200 instead of r50)
is corrected for. However, it is larger than the 5.3% inside r50

reported by Diemand et al. (2007a) for a Milky Way-sized
halo.

In Figure 8, we compare the differential subhalo mass
functions of these six halos, counting the numbers of subha-
los as a function of their mass normalized to the M50 of their
parent halo. Interestingly, this shows that at small subhalo
masses the subhalo abundance per unit halo mass shows
very little halo-to-halo scatter. In fact, the mean differential
abundance is well fit by equation (4) with the parameters
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Figure 7. Expected mass fraction in subhalos as a function of the limiting mass Mlim, inside r50 (top curves) and inside 100 kpc (bottom
curves). The solid thin lines show an extrapolation of the direct simulation result with an n = −1.9 power-law for the differential subhalo
mass function. In this case, the total substructure mass converges at the low-mass end. The dotted lines show the prediction for the
logarithmically divergent case, n = −2. In this case, we would expect the mass in substructures down to an Earth mass (vertical

dashed line) to be about twice what we can resolve directly. This mass is a reasonable estimate for the thermal free-streaming limit in
many supersymmetric theories where the dark matter particle is a neutralino. However, the parameters of these theories are sufficiently
uncertain that the thermal limit could lie as low as 10−12 M⊙. Even in this case, the lumpy component of the halo would still be

subdominant within r50, and would be a small fraction of the total mass of 9.32 × 1011 M⊙ within 100 kpc.

given above, and the rms halo-to-halo scatter in the normal-
ization is only ∼ 8%.

In Table 2, we also list a few other basic structural prop-
erties of our halos, namely their maximum circular velocity
Vmax, the radius rmax at which this velocity is attained, a
simple measure for halo concentration, and the redshift at
which the halo formed. One way to characterize the concen-
tration of a halo is to express the mean overdensity within
rmax in units of the critical density. This corresponds to the
definition

δV =
ρ(rmax)

ρcrit

= 2
(

Vmax

H0 rmax

)2

. (6)

We can relate this quantity to a more familiar concentration
measure based on the NFW density profile:

ρ =
ρs

(r/rs)(1 + r/rs)2
, (7)

where ρs and rs are a characteristic density and radius re-
spectively. Assuming this profile shape, the pair of values
Vmax and rmax are sufficient to determine the density profile
uniquely. The characteristic NFW overdensity δc is then

δc =
ρs

ρcrit

= 7.213 δV , (8)

which can be converted to the NFW concentration c through
the equation

δc =
200

3

c3

ln(1 + c) − c/(1 + c)
. (9)

We list the “NFW” concentrations calculated in this way as
c∗NFW in Table 2. We note however that fits to the full density
profile may yield slightly different results, since in this case

the circular velocity curve of the fit will not necessarily peak
exactly at r = rmax.

Defining a precise value for the total mass of a subhalo
requires an operational definition of its ‘outer edge’. Differ-
ent substructure detection algorithms define different effec-
tive boundaries and so produce systematically different total
mass estimates. It may therefore be more robust to count
subhalos as a function of their peak circular velocity, which
typically lies well within the object and so is insensitive to
definitions of its edge. Note, however, that in small systems
maximum circular velocity estimates can be more sensitive
to numerical resolution effects than total mass estimates.

In Figure 9, we show the cumulative abundance of sub-
halos as a function of maximum circular velocity for our dif-
ferent resolution simulations of Aq-A. Again, there is good
convergence. Indeed, at the massive end, the curves lie essen-
tially on top of each other, showing that we are really seeing
the same subhalos, and that they are reproduced with the
same maximum circular velocity in all the simulations. This
suggests that we are also achieving good convergence for
the internal structure of individual subhalos, an issue that
we will investigate further below.

However, it is noticeable that the individual measure-
ments for the velocity functions peel away from their higher
resolution counterparts comparatively early at low veloci-
ties, which suggests worse convergence than found for the
subhalo mass functions at the low mass end. This behaviour
can be understood as an effect of the gravitational soften-
ing length ǫ, which lowers the maximum circular velocities
of subhalos for which rmax is not much larger than ǫ. To
estimate the strength of this effect, we can imagine that the
gravitational softening for an existing subhalo is adiabat-
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Figure 8. Differential subhalo abundance by mass for our six

halos simulated at resolution level 2. We here count all subhalos
inside r50 and plot their abundance as a function of Msub/M50.

We see that at low mass the abundance of subhalos is universal
to good accuracy when their mass is expressed in units of the
mass of their parent halo. The bottom panel shows the same
data but multiplied by a factor M2

sub
to compress the vertical

dynamic range. The dashed lines in both panels show the power-
law dN/dM ∝ M−1.9.

ically lowered from ǫ to zero. The angular momentum of
individual particle orbits is then an adiabatic invariant. As-
suming for simplicity that all particles are on circular orbits,
and that the gravitational softening can be approximated
as a Plummer force with softening length ǫ, the expected
change of the maximum circular velocity is then

V ′
max = Vmax [1 + (ǫ/rmax)

2]1/2. (10)

In the lower panel of Figure 9, we plot the cumulative ve-
locity functions for these corrected maximum circular veloci-
ties. Clearly, the measurements line up more tightly down to
lower Vmax, demonstrating explicitely that the convergence
in the number of objects counted as a function of (corrected)
circular velocity is in principle as good as that counted as
a function of mass. Note that a similar correction can also
be applied to the measured rmax values. However, for the
remainder of this paper, we focus on the raw measurements
from the simulations without applying a gravitational soft-
ening correction.

The dashed line in Figure 9 shows the fit which Reed
et al. (2005) quote for the subhalo abundance as a func-
tion of maximum circular velocity in their own simulations,
N(> Vmax) = (1/48)(Vmax,sub/Vmax,host)

−3. Diemand et al.
(2007a) found this formula to fit the results from their own

1 10 100
Vmax  [ km/s ]

100

101

102

103

104

105

106

N
 (

 >
 V

m
ax

 )

Aq-A-1

Aq-A-2

Aq-A-3

Aq-A-4

Aq-A-5

z = 0

1 10 100
Vmax  [ km/s ]

100

101

102

103

104

105

106

N
 (

 >
 V

m
ax

 )

Aq-A-1

Aq-A-2

Aq-A-3

Aq-A-4

Aq-A-5

z = 0

Figure 9. Cumulative subhalo abundance as a function of maxi-

mum subhalo circular velocity. The top panel shows the raw mea-
surements from the simulations, while in the bottom panel, we
have applied the correction of equation (10) to compensate ap-

proximately for the impact of the gravitational softening on Vmax.
We show results for 5 simulations of the Aq-A halo carried out
with differing mass resolution. The dashed line is the fitting func-
tion given for their own simulations by Reed et al. (2005), which

also accurately matches the result for the ‘Via Lactea I’ simula-
tion (Diemand et al., 2007a). This is clearly inconsistent with our
own data.

Via Lactea I simulation very well. Figure 9 thus confirms
the indication from subhalo mass fractions that our simu-
lations show substantially more substructure than reported
for Via Lactea I. This is particularly evident at lower sub-
halo masses which are unaffected by the small number effects
which cause scatter in the abundance of massive subhalos.
With the help of J. Diemand and his collaborators, we have
checked that this abundance difference is not a result of
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Figure 10. Cumulative subhalo abundance as a function of max-

imum subhalo circular velocity in units of the circular velocity of
the main halo at r50. We show results for all 6 of our halos at
resolution level 2, and in addition we include our highest res-

olution result for the Aq-A-1 run. For comparison, we overplot
fitting functions for the Via Lactea I and Via Lactea II simula-
tions (Diemand et al., 2007a, 2008), appropriately rescaled from
a normalization to Vmax,host to one by V50,host.

the different subhalo detection algorithms used in our two
projects.

We do not think that this discrepancy can be explained
by halo-to-halo scatter since it is much larger than the vari-
ation in substructure abundance among our own sample of
halos. This is demonstrated in Figure 10, which shows the
cumulative subhalo abundance distributions within r50 as a
function of maximum subhalo circular velocity for all our
resolution level 2 halos. We plot subhalo count against sub-
halo maximum circular velocity normalized to V50, the cir-
cular velocity of the main halo at r50. Because the slope of
the abundance curve is very close to −3, this is equivalent
to plotting subhalo count normalized by the total parent
halo mass within r50 (which is proportional to V 3

50) against
subhalo maximum circular velocity. There is remarkably lit-
tle scatter between our simulations when normalized in this
way; the rms scatter in amplitude in the power-law regime
is around 10%. The figure also shows the substructure abun-
dance reported for the Via Lactea I (dashed) and II (dotted)
simulations (Diemand et al., 2007a, 2008), after rescaling to
the normalization we prefer here.‡. There is a difference of
a factor of 3.1 between the mean abundance of small subha-
los in our simulations and in ‘Via Lactea I’. The Diemand
et al. (2008) abundance for Via Lactea II differs substan-
tially from that for Via Lactea I and is much closer to our

‡ Note that V50,host unambiguously characterizes the enclosed
mass within r50, the region in which subhalos are counted. This
is not the case for Vmax,host, the velocity scale chosen by Die-
mand et al. (2008), because it is additionally affected by halo

concentration.
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Figure 11. Subhalo number density profiles for different sub-

halo mass ranges in the Aq-A-1 simulation. In the top panel, the

number density profiles for 5 logarithmic mass bins are shown,
normalized to the mean number density within r50 (vertical
dashed line). The profile shape appears independent of subhalo
mass, and is well fit by an Einasto profile with α = 0.678 and

r−2 = 199 kpc = 0.81 r200. The bottom panel shows the number
fraction of subhalos per logarithmic interval in radius, on a linear-
log plot. The area under the curves is proportional to subhalo

number, showing that most subhalos are found in the outermost
parts of the halo.

results. Nevertheless, the abundance of small subhalos in
Via Lactea II is still 31% lower than the mean for our set of
6 halos, which is more than three times the rms scatter in
abundance between our halos.

These results lead us to disagree with the assertion by
Madau et al. (2008) and Diemand et al. (2008) that differ-
ences of this magnitude lie within the halo-to-halo scatter.
Instead, the substantial difference between ‘Via Lactea I’
and Via Lactea II’ must have a systematic origin. We also
think it unlikely that the higher abundance in our simu-
lations reflects the small differences in the background cos-
mology assumed in the two projects, as suggested by Madau
et al. (2008), even though this is a possibility we cannot ex-
clude. For example, the Via Lactea simulations assumed a
lower value for σ8 than we used, and we believe that lower-
ing σ8 should result in slightly more substructure in objects
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Figure 12. The mass fraction in subhalos as a function of radius.

In the top panel, we show results for the local mass fraction in
substructures for our six different halos, as a function of radius
normalized by r50. The thick solid line shows the average of all

the runs. In the middle panel, we consider the same quantity for
the different resolution simulations of the Aq-A halo, while in the
bottom panel we show the corresponding cumulative substruc-

ture fractions in the Aq-A halo. The solid line in the two upper
panels is an empirical fit with a slowly running power law index.
The vertical dotted lines at 8 kpc in the middle and bottom pan-
els mark the position of the Solar circle; here the expected local

mass fraction in subhalos has dropped well below 10−3. The outer
vertical dotted lines mark r50 for the Aq-A halo.

of given mass, simply because these halos then tend to form
more recently which increases the number of surviving sub-
halos within them (e.g. De Lucia et al., 2004). We have ex-
plicitly confirmed this effect by comparing the substructure
abundances in the Millennium simulation (with σ8 = 0.9)
with those in the simulations of Wang et al. (2008), which
used the same cosmology except for taking σ8 = 0.722. On
the other hand, the different tilt assumed for the primoridial
power spectrum of the Via Lactea II simulation may have
reduced the subhalo abundance and could perhaps be re-
sponsible for the difference (Zentner & Bullock, 2003).

We note that the small halo-to-halo scatter in substruc-
ture abundance which we find also contradicts the recent
suggestion by Ishiyama et al. (2007) that the halo-to-halo
variation in subhalo abundance could be very large, and that
the apparent paucity of dwarfs surrounding the Milky Way
might simply reflect the fact that our Galaxy happens to
live in a low density environment.

3.2 The spatial distribution of subhalos

In Figure 11, we show the radial distribution of subhalos
of different mass within our Aq-A-1 simulation. In the top
panel, we plot the number density profile for different sub-
halo mass ranges, each normalized to the mean number den-
sity of subhalos of this mass within r50. The number density
of subhalos increases towards halo centre, but much more
slowly than the dark matter density, consistent with previ-
ous work (e.g. Ghigna et al., 1998; Gao et al., 2004; Nagai
& Kravtsov, 2005; Diemand et al., 2004, 2007a). As a re-
sult, most subhalos of a given mass are found in the outer
parts of a halo, even though the number density of subha-
los is highest in the central regions. Another view of this
behaviour is given in the bottom panel of Figure 11, which
histograms the abundance of subhalos as a function of log
radius so that the area under the curves is proportional to
the total number of subhalos. Clearly, the vast majority of
subhalos are found between ∼ 100 kpc and the outer radius
of the halo.

Perhaps the most remarkable aspect of Figure 11 is that
there appears to be no trend in the shape of the number den-
sity profiles with subhalo mass. Previous work has already
hinted at this behaviour (Diemand et al., 2004; Ludlow et al.,
2008), which is here confirmed with much better statistics
and over a much larger dynamic range in mass. We note
that this disagrees with a tentative finding by De Lucia
et al. (2004), who suggested that more massive substruc-
tures have a radial profile that is more strongly antibiased
with respect to the mass than that of low mass subhalos.
Like Ludlow et al. (2008) we find that the number den-
sity profile is well described by an Einasto profile (a fit to
our measurements yields a shape parameter α = 0.678 and
scale radius r−2 = 199 kpc = 0.81 r200). It is thus tempting
to conjecture that this behaviour continues to (arbitrarily)
small subhalo masses. If true, an interesting corollary is that
there must be a smooth dark matter component which dom-
inates the inner regions of halos. Only the outer parts may
have a substantial mass fraction in lumps (see also Figure 7).
This contrasts with previous speculations (Calcáneo-Roldán
& Moore, 2000; Moore et al., 2001) that all the mass of a
halo may be bound in subhalos.

Further light on this question is shed by Figure 12,
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Figure 13. Images of substructure within substructure. The top left panel shows the dark matter distribution in a cubic region of side
2.5 × r50 centred on the main halo in the Aq-A-1 simulation. The circles mark six subhalos that are shown enlarged in the surrounding
panels, and in the bottom left panel, as indicated by the labels. All these first generation subhalos contain other, smaller subhalos which

are clearly visible in the images. SUBFIND finds these second generation subhalos and identifies them as daughter subhalos of the larger
subhalos. If these (sub-)subhalos are large enough, they may contain a third generation of (sub-)subhalos, and sometimes even a fourth
generation. The bottom panels show an example of such a situation. The subhalo shown on the bottom left contains another subhalo
(circled) which is really made up of two main components and several smaller ones (bottom, second from left). The smaller of the

two components is a third generation substructure (bottom, third from left) which itself contains three subhalos which are thus fourth
generation objects (bottom right).
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where we show the local mass fraction in subhalos as a func-
tion of radius. In the top panel, we compare results for our
six different halos, with the radial coordinate normalized by
r50. While there is some scatter between the different halos,
the general behaviour is rather similar and shows a rapid
decline of the local mass fraction in substructures towards
the inner parts of each halo. The mean of the six simulations
(thick red line) is well fit by a gently curving power-law. It
can be parameterized by

fsub = exp
[

γ + β ln(r/r50) + 0.5 α ln2(r/r50)
]

, (11)

with parameters α = −0.36, β = 0.87, and γ = −1.31. This
fit is shown in the upper two panels of Figure 12 as a thin
black line. The middle panel is the same measurement, but
for all the different resolution simulations of the Aq-A halo,
while the bottom panel is the corresponding cumulative plot.
These two panels give an impression of how well numerical
convergence is achieved for this quantity.

An interesting implication from Figure 12 is an estimate
of the fraction of the mass in substructures near the Solar
Circle (marked by a vertical dashed line). At r = 8 kpc, the
expected local mass fraction in substructure has dropped
well below 10−3. This measurement appears converged, and
accounting for unresolved substructure does not raise the
fraction above 10−3 (compare Figure 7). The dark matter
distribution through which the Earth moves should therefore
be mostly smooth, with only a very small contribution from
gravitationally bound subhalos.

4 SUBHALOS INSIDE SUBHALOS

In our simulations, we find several levels of substructure
within substructure. Figure 13 illustrates this by show-
ing individually 6 of the largest Aq-A-1 subhalos in en-
larged frames. Clearly, all of these subhalos have embedded
substructures. Sometimes these second-generation subhalos
contain a further (third) level of substructure and, in a few
cases, we even find a fourth generation of subhalos embed-
ded within these. An example is given in the bottom row of
Figure 13, which zooms recursively on regions of the subhalo
labeled “f” in the top-left panel. As shown in the bottom-
left panel, subhalo “f” has several components, each of which
has identifiable sub-components; we are able to identify up
to four levels of this hierarchy of substructure in this system.
We note that the hierarchy of nested structures is established
directly by the recursive nature of the SUBFIND algorithm;
at each level, a given substructure and its parent structure
are surrounded by a common outer density contour that
separates them from the next level in the hierarchy.

It is important to quantify in detail the hierarchi-
cal nature of substructure, since this may have a number
of consequences regarding indirect and direct dark matter
search strategies. Recently, Shaw et al. (2007) suggested that
the (sub-)substructure distribution in subhalos might be a
scaled version of the substructure distribution in main ha-
los. This claim has been echoed by Diemand et al. (2008),
who report roughly equal numbers of substructures inside
radii enclosing a mean overdensity of 1000 times the cosmic
average value (r250 in our notation) and centred at either
subhalos or the main halo. This result has been interpreted
by Kuhlen et al. (2008) to imply that the (sub-)subhalo
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Figure 14. An example of the determination of the subhalo ra-

dius rsub. The thick blue line shows the spherically averaged den-
sity profile of particles identified by SUBFIND as gravitationally
bound to the subhalo, while the thin black line is the density pro-

file of all particles. The purple line is the density profile of the
difference, i.e. of all particles that are not bound to the subhalo.
The dashed horizontal line is the mean local background density

ρloc at the subhalo’s location, estimated within the radius marked
by the vertical dotted line, which encloses Msub in the profile of
the total mass. The red vertical line marks our estimated radius
rsub, at which point the bound density profile has dropped to

0.02 × ρloc. The dashed blue vertical line shows the estimated
tidal radius of the subhalo based on Msub.

abundance per unit mass of a subhalo should be roughly
constant and equal to that of the main halo. This, however,
seems unlikely because, as we have seen, local substructure
abundance is a strong function of radius in main halos, with
most of the substructure found in the outer regions.

In this section, we present the first convergence stud-
ies ever attempted for (sub-)substructure inside subhalos in
order to assess the alleged self-similarity of the substruc-
ture hierarchy. We begin by discussing a suitable definition
for the outer edge of a subhalo, which allows us to mea-
sure the (sub-)substructure mass fractions of subhalos in a
consistent manner. We then study the number and mass of
sub-subhalos within that radius and compare them with the
expectation from self-similarity. In order to compare with
recent work by Diemand et al. (2008), we also carry out, for
a few subhalos, the same analysis within a radius of fixed
overdensity, r250.

4.1 The radius of a subhalo

SUBFIND identifies substructures as locally overdense re-
gions relative to the average background density. It is thus
able to find substructures and assign masses to them with-
out large biases throughout most of the halo. The procedure,
however, may break down near the centre, where the average
density of the main halo may overwhelm even the highest
density peak of embedded substructures, leading to poten-
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Figure 15. Comparison between estimated subhalo radii and

tidal radii for the Aq-A-1 simulation. Only subhalos with at least
104 particles have been included in this plot.

tial biases in the masses assigned to subhalos by SUBFIND.
It is therefore desirable to find a definition for the radius
of a subhalo that is simple and physically meaningful and,
at the same time, relatively insensitive to the accuracy with
which SUBFIND assigns subhalo masses.

We have settled on the following operational procedure
for determining a subhalo radius, rsub. Starting from the
centre of a particular subhalo, we first measure spherically
averaged density profiles for all the mass and for the grav-
itationally bound mass (as determined by SUBFIND). We
then obtain a measure for the local density of the main halo
at the position of the subhalo location by: (a) determining
the radius r′ enclosing total mass equal to Msub; (b) deter-
mining the amount of unbound mass M ′ inside this radius
(this is simply the difference between Msub and the bound
mass within r′); (c) defining ρloc = M ′/(4πr′3/3). With this
in hand, we operationally define the bounding radius rsub of
the subhalo to be the radius at which the spherically aver-
aged density profile of the bound mass has dropped below
0.02 × ρloc.

The bound density profile drops very steeply near the
edge of the subhalo, so changing the prefactor 0.02 has only
a minor influence on the radius determined in this way. We
found that, with this choice, the edge of the subhalo is ro-
bustly determined right at the transition between the falling
density profile of the subhalo, and the approximately con-
stant local background density of the halo. Also, this radius
tends to agree well with the minimum in the circular velocity
curve constructed using all the mass around the subhalos’s
centre. In Figure 14, we show a typical example to illus-
trate this procedure. Note that the determination of ρloc,
and hence the value of rsub obtained through the above pro-
cedure, is relatively insensitive to the precise value of Msub.

In Figure 15, we show how the subhalo radii determined
in this way compare with tidal radii derived from the dis-
tances of subhalos to halo centre, and their SUBFIND masses

Msub. We calculate the tidal radius (Binney & Tremaine,
1987; Tormen et al., 1998) of a subhalo of mass Msub and
distance r from the centre of the main halo as

rt =

(

Msub

[2 − d ln M/d ln r] M(< r)

)1/3

r (12)

where M(< r) is the main halo mass within a sphere of ra-
dius r. Reassuringly, there is good agreement between rt and
rsub in the mean, with some scatter. This gives us further
confidence that our subhalo radii are physically meaningful,
and that SUBFIND correctly identifies the self-bound regions
of subhalos.

4.2 Matching individual subhalos

In order to study convergence not only of the main halo but
also of individual embedded subhalos, we need an appropri-
ate method to identify the same subhalo in simulations with
different mass resolution. This is less straightforward than it
may seem at first, since one cannot expect the subhalo to be
at exactly the same position in different simulations. When
the numerical resolution is changed, small phase offsets build
up in the orbits of individual subhalos, causing them to be
at slightly different positions in different simulations, even
though their histories and their internal structure may agree
in detail (see, e.g., Frenk et al., 1999).

One solution to this problem is to match subhalos at
very early times, by tracking the particles of a particular
subhalo back to the (unperturbed) initial conditions. For
each particle, we can then find the closest particle in another
realization of the initial conditions created for the same halo

but at different numerical resolution. These matched par-
ticles can then be tracked forward in time in the second
simulation to see where they end up. This yields a set of
possible subhalo matches in the second simulation, among
which the one containing the largest number of matched par-
ticles is selected as the partner to the original subhalo. To
increase robustness, one may require that the same match
be obtained when the procedure is carried out in reverse,
i.e. starting with the subhalo in the second simulation.

We have found this procedure to work quite robustly
for our simulation set. To speed up the matching procedure
in the unperturbed initial conditions, we have successfully
applied the following trick. Our IDs are constructed as 63-
bit Peano-Hilbert keys (Springel, 2005), i.e. they correspond
to positions along a space-filling fractal that tessellates our
simulation volume with a fiducial grid of 221 cells per di-
mension. This corresponds to a comoving spatial resolution
of around 65 pc, which is still considerably smaller than the
mean particle spacing in the high resolution region, even for
the Aq-A-1 simulation. Exploiting the fact that positions
that are close on the Peano-Hilbert curve are always close
in 3D space (the reverse is, however, not always true), we
can accelerate the matching by finding the particle with the
nearest Peano-Hilbert key in the second simulation. This al-
ways finds a particle that is very close, although it does not
guarantee that it is the closest. This procedure turns out to
be quite sufficient for the task at hand here.

In Figure 18 we compare properties of subhalos matched
in this way in the Aq-A series of simulations. The two panels
on the left show the masses and maximum circular velocities
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Figure 16. (Sub-)substructure count within subhalos as a func-

tion of their mass. The plot includes all subhalos with more
than 50,000 particles in the Aq-A-1 simulation. The actual
(sub-)subhalo counts for these subhalos are shown as red dots and

their average in logarithmically spaced mass bins is indicated by
the purple line. Open circles show the (sub-)subhalo count which
these same subhalos would have if they were scaled-down copies

of the main halo, with the corresponding average indicated as a
function of mass by the solid black line. When estimating these
predictions, we correct for the lower effective resolution within
subhalos in comparison to the main halo by only counting main
halo subhalos above the appropriately scaled mass limit.

of subhalos in the Aq-A-1, Aq-A-3, and Aq-A-4 simulations
in units of the values measured for their counterparts in the
Aq-A-2 simulation. Remarkably, the agreement is excellent
with a surprisingly small scatter, and there is no obvious
systematic offset between the different resolutions. Further
analysis of these data is given in Springel et al. (2008), where
we show that the maximum circular velocity of subhalos can
be trusted in the mean with an accuracy of 10% down to
Vmax ∼ 1.5 km s−1. Convergence for rmax is more difficult to
achieve, but is still good in the mean down to rmax ∼ 165 pc.
In the right panel of Fig. 18 we compare the projected spatial
positions of matching subhalos in the Aq-A-1, Aq-A-2, Aq-
A-3 and Aq-A-4 simulations. While the agreement for the
absolute coordinates is not perfect, especially for subhalo
quartets close to the main halo’s centre, matching subhalos
are generally found quite close together. The mean spatial
offset is of order ∼ 30 kpc, which is much better than we
have typically found in our older simulation work (Stoehr
et al., 2003). This is a tribute to the improved integration
accuracy in GADGET-3, and to the high quality of our initial
conditions.

4.3 The abundance of substructures within

subhalos

Using our matched sets of subhalos we are now ready to con-
sider the convergence of the properties of substructure in-
side subhalos. We begin by considering (sub-)substructures
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Figure 17. (Sub-)substructure mass fraction in subhalos as a

function of their radius within the main halo, expressed as the
mean enclosed density in units of the cosmic mean density. The
innermost subhalos are thus on the right. The plot includes all

subhalos with more than 50,000 particles in Aq-A-1 (shown as
symbols). All (sub-)subhalos within the estimated subhalo ra-
dius rsub are counted, and their total mass is normalized by the

total mass within rsub. To be able to compare all measured val-
ues of fsub on an equal footing, we add a correction to account
for (sub-)subhalos below our resolution limit but above the mass
which corresponds to the resolution limit in the main halo after

scaling down to each subhalo. The solid red line gives the sub-
structure mass fraction which the subhalos would have if they
were scaled down versions of the main halo, but with all material
outside the tidal radius removed. The horizontal blue line is the

substructure mass fraction for the main halo within r50.

within the subhalo radius, rsub, and extend the analysis later
to regions of fixed overdensity, in order to compare with the
results reported by Diemand et al. (2008).

We start by simply counting all subhalos within rsub

of a given subhalo’s centre and comparing the count with
the number expected from the assumption that subhalos are
simply scaled-down copies of the main halo. This expected
number must be adjusted to take into account that, unlike
the main halo, subhalos have a different “edge” (rsub), as
well as comparatively poorer mass resolution. In practice,
the self-similar expected number is computed by consider-
ing in the main halo only subhalos with masses exceeding
20 mp Mmain/Mrsub

, where 20 mp is our absolute SUBFIND

mass limit for subhalo detection, Mmain is the main halo’s
mass within a radius that encloses the same overdensity as
that of the subhalo within rsub, and Mrsub

is the total mass
within rsub of the subhalo’s centre.

In Figure 16 we compare the actual (sub-)subhalo
counts with the self-similar expectation, as a function of sub-
halo mass. Interestingly, we always find fewer (sub-)subhalos
than expected from the self-similar hypothesis. The suppres-
sion in substructure abundance is not uniform; a few sub-
halos have almost the full expected abundance, while others
lie well below it. This is not entirely unexpected, and it is
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Figure 18. The two panels on the left compare the Msub and Vmax values of individual matched subhalos in Aq-A-1, Aq-A-2, Aq-A-3,
and Aq-A-4. In both panels, the measured values are ratioed against the value found in Aq-A-2, our second highest resolution simulation
of the ‘A’ halo. In the panel on the right, we use small circles to indicate the projected positions of the matched subhalos on the xz-plane.
The positions of each subhalo in the 4 different simulations are joined by thin lines. The mean positional off-set between matched subhalos

in Aq-A-4 and Aq-A-1 is ∼ 54 kpc. This shrinks to 28 and 26 kpc for matches of Aq-A-3 and Aq-A-2 to Aq-A-1, respectively. The inner
and outer circles mark r200 and r50.

probably related to the time since each subhalo was accreted
into the main halo and the extent to which it has lost mass
to tides. Typically the number of (sub-)subhalos is a factor
of 2 or 3 below that predicted by self-similarity.

The mass fraction of subhalos in the form of em-
bedded substructure provides another way of quantifying
(sub-)substructure abundance. To estimate this we simply
measure the total mass of all (sub-)subhalos within rsub and
divide it by the total mass M(rsub) contained within this
same radius. Because the minimum subhalo size identified
by SUBFIND is always 20 particles regardless of the mass of
the parent object (main halo or subhalo), we correct the
measured cumulative substructure mass by extrapolating
the mass function from 20 mp down to 20 mp M(rsub)/Mmain

using a slope N(> m) ∝ m−0.9. Note that Mmain is here the
mass of the main halo measured within the radius that en-
closes an equal mean overdensity as the subhalo within rsub.

In Figure 17, we compare the substructure mass frac-
tion of subhalos to those of the main halo. The latter is
computed within the radius where the main halo density
equals that of the subhalo (ρ(r) = ρsub). As shown in Fig-
ure 17, computed in this way the main halo prediction is a
monotonically decreasing function of ρsub. Interestingly, this
line forms an accurate upper bound to the measured sub-
structure mass fractions of subhalos. Close to the line, the
self-similar expectation is fulfilled, but the fact that most
subhalos lie considerably below the line confirms that sub-
structure is on average significantly under-abundant in sub-
halos when compared to the main halo.

For completeness, and in order to ease comparison with
previous work, we show in Figure 19 the cumulative sub-
halo abundance for 12 of our more massive subhalos in the

Aq-A halo. For the first time, we consider the convergence
of the (sub-)substructure mass function for individual sub-
halos, based on the Aq-A-1, Aq-A-2, and Aq-A-3 simula-
tions and our matched set of subhalos. Here we count all
substructures within a sphere (of radius r250) centred on
the subhalo, and of mean overdensity 250 times the crit-
ical density (and so 1000 times the cosmic mean density,
as chosen by Diemand et al., 2008). A further criterion for
selecting the subhalos shown in Figure 19 was that their
tidal radius rt should exceed r250, thus ensuring that the re-
gion where (sub-)subhalos are counted really lies inside the
subhalo. Note that this criterion is actually rather restric-
tive, as it precludes subhalos from study that are at radii
r < r250 = 258 kpc.

The (sub-)subhalos shown in Figure 19 are counted as a
function of their mass normalized by M250, the total mass of
each subhalo within its own r250. When the substructure in
main halos is counted in this way, a near-universal cumula-
tive subhalo mass function is found, as we show explicitly in
Figure 20 for our sample of 6 halos simulated at resolution
level 2. There is a well-defined mean relationship with little
scatter. For reference, we include a power-law fit to this rela-
tion in the various panels of Figure 19. Clearly, also in this
case most subhalos show a cumulative substructure mass
function with similar slope but with a normalization that
is typically substantially lower. Only a few subhalos have
a substructure abundance which approaches that predicted
by scaling our results the main halo.

We may also compare the substructure abundance of
subhalos inside r250 with that of field halos of equal M250,
such that both are equally well resolved and biases due to
different numerical resolutions are excluded. Figure 21 shows

c© 0000 RAS, MNRAS 000, 000–000



20 Springel et al.

10-6 10-5 10-4 10-3 10-2 10-1M sub  / M2501

10

100

1000

N ( > Msub / M250 )

1

10

100

1000

N
 (

 >
 M

su
b 

/ M
25

0 
)

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 1.85E+10 MO •

M250 = 2.31E+10 MO •

r250 =  55.3 kpc

d = 352.4 kpc

10-6 10-5 10-4 10-3 10-2 10-1M sub / M2501

10

100

1000

N ( > Msub / M250 )

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 1.85E+10 MO •

M250 = 2.49E+10 MO •

r250 =  56.7 kpc

d = 346.4 kpc

10-6 10-5 10-4 10-3 10-2 10-1Msub  / M2501

10

100

1000

N ( > Msub / M250 )

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 1.27E+10 MO •

M250 = 1.52E+10 MO •

r250 =  48.1 kpc

d = 399.8 kpc

10-6 10-5 10-4 10-3 10-2 10-1M sub  / M2501

10

100

1000

N ( > Msub / M250 )

1

10

100

1000

N
 (

 >
 M

su
b 

/ M
25

0 
)

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 1.06E+10 MO •

M250 = 1.18E+10 MO •

r250 =  44.2 kpc

d = 387.2 kpc

10-6 10-5 10-4 10-3 10-2 10-1M sub / M2501

10

100

1000

N ( > Msub / M250 )

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 1.04E+10 MO •

M250 = 1.34E+10 MO •

r250 =  46.1 kpc

d = 314.9 kpc

10-6 10-5 10-4 10-3 10-2 10-1Msub  / M2501

10

100

1000

N ( > Msub / M250 )

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 4.55E+09 MO •

M250 = 5.53E+09 MO •

r250 =  34.3 kpc

d = 370.4 kpc

10-6 10-5 10-4 10-3 10-2 10-1M sub  / M2501

10

100

1000

N ( > Msub / M250 )

1

10

100

1000

N
 (

 >
 M

su
b 

/ M
25

0 
)

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 3.88E+09 MO •

M250 = 5.34E+09 MO •

r250 =  33.9 kpc

d = 337.0 kpc

10-6 10-5 10-4 10-3 10-2 10-1M sub / M2501

10

100

1000

N ( > Msub / M250 )

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 2.43E+09 MO •

M250 = 2.54E+09 MO •

r250 =  26.5 kpc

d = 297.8 kpc

10-6 10-5 10-4 10-3 10-2 10-1Msub  / M2501

10

100

1000

N ( > Msub / M250 )

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 1.65E+09 MO •

M250 = 1.75E+09 MO •

r250 =  23.4 kpc

d = 418.9 kpc

10-6 10-5 10-4 10-3 10-2 10-1M sub  / M2501

10

100

1000

N ( > Msub / M250 )

1

10

100

1000

N
 (

 >
 M

su
b 

/ M
25

0 
)

10-6 10-5 10-4 10-3 10-2 10-1

Msub / M250

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 1.37E+09 MO •

M250 = 1.52E+09 MO •

r250 =  22.3 kpc

d = 336.5 kpc

10-6 10-5 10-4 10-3 10-2 10-1M sub / M2501

10

100

1000

N ( > Msub / M250 )

10-6 10-5 10-4 10-3 10-2 10-1

Msub / M250

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 1.13E+09 MO •

M250 = 1.05E+09 MO •

r250 =  19.8 kpc

d = 421.0 kpc

10-6 10-5 10-4 10-3 10-2 10-1Msub  / M2501

10

100

1000

N ( > Msub / M250 )

10-6 10-5 10-4 10-3 10-2 10-1

Msub / M250

Aq-A-3
Aq-A-2
Aq-A-1

Msub = 1.18E+09 MO •

M250 = 1.39E+09 MO •

r250 =  21.7 kpc

d = 301.9 kpc

Figure 19. Cumulative mass function of (sub-)subhalos within subhalos. In each panel, we show results for one subhalo, and we compare

results for different numerical resolutions, corresponding to simulations Aq-A-1, Aq-A-2 and Aq-A-3. Only substructures within a distance
r250 of the subhalo centre are counted, and the substructure mass is normalized to the mass within this radius M250. The thin black
power-law shows the subhalo abundance of main halos within a radius enclosing the same mean overdensity. The labels in each panel
give the subhalo mass Msub as determined by SUBFIND, the values of M250 and r250, and the distance d of the subhalo from the centre

of the main halo.
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6 different halos at level 2 resolution, as well as for our highest
resolution run Aq-A-1. Subhalo masses are measured in units of
M250 in each case. The dashed line is a fit to the mean mass

function.

our results for this comparison, both in terms of the count
of all substructures down to the resolution limit, and by just
counting subhalos with a maximum circular velocity larger
then 0.1 V250, which effectively measures the amplitude of
the (sub-)subhalo velocity function. We here used uncontam-
inated field halos found in the high-resolution region around
the main halo in Aq-A-1, and compared them to subhalos
in the outer parts of the main halo (with r > 258 kpc, such
that their tidal radius is larger than r250). Again we find
an offset of about a factor of 2 in the mean substructure
abundance between field halos and genuine subhalos.

We conclude that the (sub-)substructure abundance in
subhalos is not, in general, a scaled version of that in main
halos. Rather, the self-similar expectation provides an upper
limit on the abundance of these second generation substruc-
tures; less (sub-)substructure is typically found. This reflects
the fact that the substructure abundance of a subhalo is not
only diminished by tidal truncation once it falls into a larger
structure; in addition, its retained substructures continue to
lose mass to the main subhalo through tidal effects and, in
strong contrast to the situation for main halos, they are not
continually replenished by infall of new subhalos from the
field. The substructure deficit in subhalos when compared
to main halos at the same mean overdensity is expected to
grow with time as they orbit within their main halos. It
will therefore be more marked in subhalos in the inner halo,
which are typically “older”.

Our results thus caution strongly against the assump-
tion that subhalos typically have mass fractions in substruc-
ture similar to the main halo (as suggested by, e.g., Shaw
et al., 2007; Kuhlen et al., 2008).
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Figure 21. Substructure count in subhalos of Aq-A-1 within r250

(red filled circles) compared with field halos (hollow black circles)
inside r250, as a function of M250. The top panel shows the sub-

structure count down to our resolution limit, while the bottom
panel gives the count above a limiting maximum circular velocity
equal to 0.1 V250, which effectively measures the amplitude of the
subhalo velocity function. The solid lines give averages for inde-

pendent logarithmic mass bins. We see that there is a systematic
offset in the substructure abundance of field halos and genuine
subhalos. The downturn of the count above 0.1 V250 for masses

below ∼ 109 M⊙ is due to resolution limitations.

5 INTERNAL STRUCTURE OF SUBHALOS

In this section we study the structural properties of sub-
halos, and we compare them to the properties of similar
mass isolated halos. We analyze how the density profiles of
individual subhalos converge as numerical resolution is in-
creased, and we measure the concentration of subhalos as a
function of mass, circular velocity and radial distance. We
then compare with the corresponding relations for field ha-
los.

5.1 Density profiles for subhalos

The internal density structure of nonlinear dark matter ha-
los is one of the most important predictions obtained from
numerical simulations of the CDM paradigm. The density
profile directly affects the rotation curves of galaxies, the

c© 0000 RAS, MNRAS 000, 000–000



22 Springel et al.

gravitational lensing properties of dark matter halos, and
the X-ray luminosity and SZ-signal of galaxy groups and
clusters. The density profile of subhalos also determines the
kinematics of the stars in satellite galaxies, which are obser-
vationally accessible for the dwarf spheroidals around the
Milky Way (e.g. Stoehr et al., 2002; Strigari et al., 2007a).
Furthermore, the inner density profiles of halos and subha-
los are critical for estimating the luminosity in dark matter
annihilation radiation, in case such a decay channel exists.

About a decade ago, Navarro et al. (1996, 1997) were
able to show that the spherically averaged density profiles
of dark matter halos have an approximately universal shape
that is well described by a simple fitting formula

ρ(r) =
δc ρcrit

(r/rs)(r/rs + 1)2
(13)

that has become known as the NFW-profile. In this dou-
ble power law, the local logarithmic slope gradually changes
from a value of −3 in the outer parts to an asymptotic slope
of −1 in the inner parts. The spatial scale rs of this tran-
sition is treated as a fitting parameter and is often param-
eterized in terms of the concentration c = r200/rs of the
halo, which is, in fact, simply a reparameterization of δc,
the characteristic overdensity relative to the critical density:
δc = (200/3) c3/[ln(1+c)−c/(1+c)]. NFW showed the con-
centration to depend systematically on halo mass, a finding
that can be interpreted as reflecting the density of the uni-
verse at the time of halo formation. A number of analytic
fitting functions for this dependence have been proposed in
the literature (Navarro et al., 1997; Bullock et al., 2001; Eke
et al., 2001), but only recent large-volume simulations have
been able to calibrate it reliably for rare objects like massive
galaxy clusters (Neto et al., 2007; Gao et al., 2007).

Ever since the discovery of the NFW profile, the struc-
ture of the inner cusp has been the subject of much dis-
cussion and controversy. As computing power has increased,
many groups have reexamined the value of the inner slope
using ever bigger and better resolved simulations, but no
consensus has yet emerged (Fukushige & Makino, 1997;
Moore et al., 1998, 1999b; Ghigna et al., 2000; Jing & Suto,
2000; Fukushige & Makino, 2001; Klypin et al., 2001; Jing &
Suto, 2002; Fukushige & Makino, 2003; Power et al., 2003;
Navarro et al., 2004; Fukushige et al., 2004; Diemand et al.,
2005; Stoehr, 2006; Knollmann et al., 2008).

It has often been claimed that the inner cusps of ha-
los and subhalos may have slopes less than −1, with some
studies even proposing an asymptotic slope of −1.5 (Moore
et al., 1999b; Fukushige & Makino, 2001). For main halos
this proposition has been ruled out in recent years by newer
generations of simulations. Nevertheless, the idea that the
asymptotic slope is typically steeper than −1 (e.g. ∼ −1.2)
is still widespread and has been reiterated in recent papers,
even though this is clearly inconsistent with, for example,
Fig. 4 or the numerical data in Navarro et al. (2004).

With respect to the density profiles of subhalos, the
situation is even more unclear. So far few studies have ex-
amined this question directly. Stoehr (2006) found that the
circular velocity curves of subhalos are best fit by a parabolic
function relating log V to log r, implying that the density
profiles become shallower in the centre than NFW. On the
other hand, Diemand et al. (2008) recently argued that sub-
halos have steep cusps with a mean asymptotic slope of −1.2.

We want to emphasize from the outset that the nature
of halo and subhalo density profiles, becoming gradually and
monotonically shallower towards the centre, makes it easy
to arrive at the wrong conclusion for the structure of the
inner cusp. Almost all numerical simulations to date have
been able to produce demonstrably converged results for
the density profile only in regions where the local slope is
significantly steeper than −1. They have also all shown that
the slope at the innermost measured point is significantly
shallower than at radii a factor of a few further out. Thus,
although no slope as shallow as −1 has been found, there
is also no convincing evidence that the values measured are
close to the asymptotic value, if one exists. Most claims of
steep inner cusp slopes are simply based on the assertion
that the slope measured at the innermost resolved point
continues all the way to the centre.

Navarro et al. (2004) argued that the local logarithmic
slope of halo profiles changes smoothly with radius and is
poorly fit by models like those of NFW or Moore that tend
to an asymptotic value on small scales. They showed that in
their simulation data the radial change of the local logarith-
mic slope can be well described by a power-law in radius, of
the form

d log ρ

d log r
= −2

(

r

r−2

)α

, (14)

which corresponds to a density profile

ρ(r) = ρ−2 exp

(

− 2

α

[(

r

r−2

)α

− 1

])

. (15)

Here ρ−2 and r−2 are the density and radius at the point
where the local slope is −2. This profile was first used by
Einasto (1965) to describe the stellar halo of the Milky Way,
so we refer to it as the Einasto profile. The introduction of a
shape parameter, α may be expected, of course, to provide
improved fits, but we note that fixing α ∼ 0.16 gives a two-
parameter function which still fits mean halo profiles much
better than the NFW form over a wide range of halo masses
(i.e. with maximum residuals of a few percent rather than
10 percent, Gao et al., 2007). Further evidence for a profile
where local slope changes gradually has been presented by
Stoehr et al. (2003); Stoehr (2006); Graham et al. (2006).
For reference, we note that the enclosed mass for the Einasto
profile is

M(r) =
4πr3

−2ρ−2

α
exp

(

3 ln α + 2 − ln 8

α

)

γ

[

3

α
,
2

α

(

r

r−2

)α]

(16)

where γ(a, x) is the lower incomplete gamma function. For
a value of α = 0.18 the radius where the maximum circular
velocity peaks is given by rmax = 2.189 r−2, and the max-
imum circular velocity is related to the parameters of the
profile by V 2

max = 11.19 Gr2
−2 ρ−2.

No published simulation to date has had enough dy-
namic range to measure the logarithmic slope of the density
profile in the region where the Einasto model would predict
it to be shallower than −1, so only indirect arguments could
be advanced for this behaviour (Navarro et al., 2004). This
situation has changed with the Aquarius Project, as can be
seen from Fig. 4, and in Navarro et al. (2008) we provide
a detailed analysis of this question. In the following, we fo-
cus on the density profiles of dark matter subhalos, where
the available particle number is, of course, much smaller.
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Figure 22. Subhalo density profiles for nine different subhalos in the Aq-A halo, simulated with varying resolution. The profiles show

the bound mass only and are drawn with thick lines for the radial range where convergence is expected, based on the criterion of Power
et al. (2003). They are continued with thin lines down to the scale 2 ǫ. Vertical dashed lines mark the radii where the force law becomes
Newtonian (2.8 ǫ). The dot-dashed purple line in each panel is the density profile of all the mass around the subhalo’s centre (i.e. including

unbound mass). The thin black line shows a fit with the Einasto profile. The labels in each panel give the maximum circular velocity,
mass, and distance d to halo centre for each subhalo. α is the shape parameter of the Einasto profile, which we here allowed to vary
freely in our fits.

Our best resolved subhalos in the Aq-A-1 simulation contain
more than 10 million particles, allowing a relatively precise
characterization of their density profiles. Until recently, such
particle numbers represented the state-of-the-art for simu-
lations of main halos.

In Figure 22, we show spherically averaged density pro-
files for 9 subhalos within the Aq-A halo. For each we com-
pare up to 5 different resolutions, covering a factor of ∼ 1835
in particle mass. The density profiles line up quite well out-
side their individual resolution limits, as predicted by the
convergence criterion of Power et al. (2003) in the form given
in equation (3). Individual profiles in the panels are plotted
as thick solid lines at radii where convergence is expected
according to this criterion, but they are extended inwards

as thin lines to twice the gravitational softening length (the
gravitational force is exactly Newtonian outside the radii
marked by vertical dashed lines). These density profiles are
based on particles that are gravitationally bound to the sub-
halos, but for comparison we also show a profile for each
subhalo that includes all the mass (i.e. including unbound
particles; thick dashed lines). It is clear that the background
density dominates beyond the ‘edge’ of each subhalo. It is
therefore important that this region is excluded when fitting
analytic model density profiles to the subhalos.

In making such fits, we restrict ourselves to the radial
range between the convergence radius (equation 3) and the
largest radius where the density of bound mass exceeds 80%
of the total mass density. The density profiles themselves are
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Figure 23. Local logarithmic slope (obtained by numerical differentiation) of the measured density profile for 9 different subhalos, at

varying numerical resolution. As in Figure 22, the thick line style is used in regions where numerical convergence is expected. The thin
solid line shows a fit with the Einasto profile. Slopes of −1.5 (corresponding to the Moore profile) and of −1.0 (the NFW profile) are
marked with horizontal dashed lines.

measured in a set of radial shells spaced equally in log r. To
define the best fit, we minimize the sum of the squared dif-
ferences in the log between measurement and model, i.e. we
characterize the goodness of fit by a quantity

Q2 =
1

Nbins

∑

i

[ln ρi − ln ρmodel(ri)]
2, (17)

where the sum extends over all bins i. We then minimize
Q with respect to the parameters of the model profile. We
have included such fits as thin solid lines in Figure 22, based
on the Einasto profile, allowing the third parameter α to
vary as well. The resulting values of α and the maximum
circular velocities of the subhalos, as well as their mass and
distance to the main halo’s centre are shown as labels in the
individual panels.

It is clear from Figure 22 that the Einasto profile pro-
vides a good description of subhalo radial density profiles,

but due to the large dynamic range on the vertical axis com-
bined with the narrow radial range over which the density
profile can be fit, it is not clear in this representation whether
the Einasto fit is significantly better than fits with other an-
alytic functions, like the NFW or Moore profiles.

Further insight can be obtained by studying the local
logarithmic slopes of the subhalo density profiles as a func-
tion of radius, which we show in Figure 23, obtained by
finite differencing of the measured density profiles. Again,
we compare the differing resolutions available for Aq-A, and
plot the results as thick lines for radii where we expect con-
vergence according to Power et al. (2003), continuing them
with thin lines towards smaller scales. The convergence cri-
terion appears to work quite well and in most cases accu-
rately delineates a limit beyond which the profiles suddenly
start to become significantly flatter. At larger radii, the lo-
cal slopes change continuously and smoothly with radius.
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Figure 24. The maximum possible inner asymptotic slope of the density profiles of 9 subhalos in the Aq-A-1 simulation. The plot

uses the same linestyles as in Fig. 23. Rather than the local slope of the density profile, this plot shows the most negative slope that is
consistent both with the locally enclosed mass, and the local spherically averaged density.

For several subhalos, we have direct evidence that for the
local slope is significantly shallower than −1.5 in the inner-
most converged bin, thereby ruling out the Moore profile for
at least some dark matter subhalos. In one case, we find con-
vergence to a slope which is clearly shallower than −1.2. As
for main halos, extrapolation of the shape of these curves to
smaller radii suggests that profiles that will become signifi-
cantly shallower before reaching an asymptotic inner slope,
if one exists. From these results it seems very unlikely that
typical dark matter subhalos could have power law cusps
with slopes as steep as −1.2, as recently suggested by Die-
mand et al. (2008).

Another way to arrive at a similar conclusion is not to
consider the numerically differentiated density profile, but
rather the maximum asymptotic inner slope

β(r) = 3[1 − ρ(r)/ρ(r)] (18)

that can be supported by the enclosed mass at a certain ra-

dius. This quantity was introduced by Navarro et al. (2004).
It requires converged values for both the local density and
the enclosed mass at each radius r. This is a more stringent
convergence requirement than asking that the density alone
be converged. Nevertheless, it can provide a powerful lower
limit on the profile slope in the inner regions; there cannot
possibly be a cusp steeper than ρ ∝ r−β since there is sim-
ply not enough mass enclosed to support it. In Figure 24,
we show β(r) as a function of radius for the same subha-
los as before, using the same approach to mark the Power
et al. (2003) convergence radius. We see that this conver-
gence criterion is not conservative enough in some of cases,
where the enclosed mass is not fully converged for the last
bin. The Power et al. (2003) criterion was actually designed
for this quantity, but it has only been tested for main halos,
and it is not surprising that we find subhalos to be some-
what more demanding. Nevertheless, this figure reinforces
our earlier conclusion. For most of the subhalos, a central
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Figure 25. Quality of fits to subhalo density profiles, based on

three different two-parameter models, an NFW profile, a Moore
profile, and an Einasto profile with α = 0.18. The circles show a
measure for the mean deviation per bin, Q, for 526 subhalos in

the main halo of the Aq-A-1 simulation. The subhalos considered
contain between 20,000 and nearly ∼ 10 million particles. The
lines in different colours show averages in logarithmic mass bins
for each of the three profiles.

dark matter cusp as steep as the Moore profile can be safely
excluded, and in a few cases, the limit is shallower than
∼ −1.3. Again, the shape of β(r) suggests that limits are
likely to tighten considerably once still smaller scales can be
resolved.

Finally, we would like to answer objectively the ques-
tion whether the Einasto model fits subhalo profiles better
than the NFW or Moore models; in other words, whether
it produces smaller residuals overall. To test this question,
we fix α for the Einasto profile at α = 0.18 so that there
are only two free parameters left, as in the NFW and Moore
profiles. (These are a characteristic overdensity and a ra-
dial scale.) Our results are insensitive to varying α in the
range ∼ 0.16 − 0.20. We estimate best fits for 526 subhalo
profiles (considering all subhalos in Aq-A-1 with more than
20,000 particles) by minimizing the quantity Q defined by
equation (17) over the radial range between the Power con-
vergence radius and an outer radius defined as above. In
Figure 25 we show the results. We plot the mean residual
per bin with symbols giving results for the Einasto profile
to illustrate the typical scatter. The solid coloured lines are
means for the three different profile shapes, calculated for
logarithmic bins of subhalo mass. We see that the Einasto
profile consistently produces the lowest residuals, followed
by the NFW profile, while the Moore profile is consistently
the worst. The relatively small difference in the quality of
the fit between the NFW and Moore profiles is due to the
fact that the resolution limitations for the subhalos restrict
the fits to comparatively large radii where the two still have
quite similar shape. There appears to be no systematic trend
with subhalo mass.
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Figure 26. Relation between rmax and Vmax for main halos (top)

and subhalos (bottom) in the Aq-A series of simulations. We com-
pare results for simulations of different resolution for this halo,
and we use solid lines to mark the mean of log rmax in each bin.

The dashed red lines enclose 68% of the distribution for the Aq-
A-1 simulation. The solid line is an extrapolation to smaller mass
of the result of Neto et al. (2007) for the halos of the Millennium
simulation, while the dotted power law in the lower panel is a fit

to our results for subhalos, lying a factor 0.62 lower.

We conclude that the density profiles of subhalos show
similar behaviour to those of main halos; the local logarith-
mic slope becomes gradually shallower with decreasing ra-
dius. There is no evidence that a fixed asymptotic power
law has been reached at the innermost converged points.
Inner cusps as steep as the Moore profile are excluded for
most objects, and for some objects we can already exclude
logarithmic slopes as steep as −1.3.

5.2 The concentration of subhalos

Because the density profiles of dark matter halos are not
pure power laws it is possible to assign them a character-
istic density or “concentration”. Perhaps the simplest such
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Figure 27. Mean relation between subhalo mass as assigned by

SUBFIND and maximum halo circular velocity. The dashed red
lines enclose 68% of the distribution around the mean (calculated
as an average of log Msub) for the Aq-A-1 simulation. The dotted
line is a power law fit, Msub ≃ 3.37 × 107 (Vmax/10 km s−1)3.49,
to the results of Aq-A-1.

measure is the overdensity (relative to critical) within the
radius where the circular velocity curve peaks (see equa-
tion 6). In many studies it has been found that halos of a
given mass exhibit a well-defined characteristic concentra-
tion (Navarro et al., 1997; Eke et al., 2001; Bullock et al.,
2001; Neto et al., 2007; Gao et al., 2007), or in other words,
that the radius rmax at which the circular velocity peaks is
tightly correlated with the maximum circular velocity Vmax.
Recently, Neto et al. (2007) have given an accurate fit to
this relation for halos with masses between about 1012 and
1015M⊙, based on the good statistics provided by the Mil-
lennium Simulation.

In the top panel of Figure 26, we show the relation-
ship between rmax and Vmax as measured for main halos in
our Aq-A simulation. These are halos that are outside of
the main Milky-Way sized halo, but are still contained in
the high-resolution region. We make sure to include only
halos that are free of any contamination by boundary par-
ticles. Comparing the various resolutions available for the
‘A’ halo, it can be seen that the correlation can be trusted
down to about Vmax ∼ 1.5 km s−1 for our highest resolution
calculation, the Aq-A-1 run. Remarkably, we find that the
power-law relation of Neto et al. (2007) describes our mea-
surements very accurately, despite the fact that this is an
extrapolation by several orders of magnitude into a regime
which was previously unconstrained by numerical data.

The bottom panel of Figure 26 shows the equivalent
measurements for subhalos that are contained within r50 of
the main halo. Clearly, these subhalos are typically more
concentrated than halos of the same circular velocity in the
field, as first found by Ghigna et al. (1998). At equal Vmax,
the rmax values of subhalos are on average 62% of those of
field halos, corresponding to a 2.6 times higher characteristic
density. This can be understood as a result of tidal mass loss.
As Peñarrubia et al. (2008) show, stripping reduces both
Vmax and rmax, but the reduction in rmax is larger, so that

the concentration increases (see also Hayashi et al., 2003;
Kazantzidis et al., 2004; Bullock & Johnston, 2005). We note
that this effect also increases the characteristic density and
the dark matter annihilation luminosity of subhalos relative
to halos in the field when they are compared at equal mass,
contrary to the arguments of Strigari et al. (2007b).

The subhalo masses Msub are tightly correlated with
Vmax as well, as shown in Figure 27. However, the slope of
this relation, Msub ∝ V 3.5

max, is somewhat steeper than ex-
pected for a self-similar scaling of subhalo structure with
size. This is again a consequence of tidal mass loss, which
affects the mass of a subhalo more than its maximum circu-
lar velocity.

Another interesting quantity to consider is the mean
characteristic density contrast δV = V 2

max/(H0rmax)
2 of sub-

halos. In Figure 28, we show the dependence of this mea-
sure of concentration on circular velocity and subhalo mass.
Clearly, the concentration increases strongly with decreas-
ing subhalo mass. Interestingly, this trend is equally strong
for subhalo samples at different radii, but the absolute val-
ues of the concentrations are larger at smaller radii. This is
illustrated in Fig. 28 which compares results for the inner
halo (r < 50 kpc) and for a shell at large radii (r > 300 kpc)
with results for the halo as a whole.

This radial trend is more directly displayed in Figure 29,
where we show the mean characteristic density contrast as a
function of radius for samples selected above different lower
cut-offs in circular velocity. In general, subhalo concentra-
tions rise towards halo centers, as found by Diemand et al.
(2007b, 2008). For comparison, we also show results for Via
Lactea II, as recently published by Diemand et al. (2008)
where a cut-off of 5 km s−1 was used. Interestingly, our sub-
halos are substantially more concentrated than those in Via
Lactea II for the same lower cut-off. The Via Lactea II sub-
halos are actually slightly less concentrated than our sub-
halos selected above 10 km s−1. The origin of this difference
is unclear, but it may be related to the discrepancy in the
abundance of subhalos that we discussed earlier in Section 3.

6 SUMMARY

In this paper, we have presented first results from the Aquar-
ius Project, a Virgo Consortium§ programme to carry out
high-resolution dark matter simulations of Milky-Way-sized
halos in the ΛCDM cosmology. This project seeks clues to
the formation of galaxies and to the nature of the dark mat-
ter by designing strategies for exploring the formation of our
Galaxy and its luminous and dark satellites, for searching
for signals from dark matter annihilation, and for designing
experiments for the direct detection of dark matter.

In our approach, we pay great attention to validating
our numerical results to careful convergence studies. In ad-
dition, we explore possible uncertainties in predictions for
the Milky Way resulting from the scatter in properties be-
tween otherwise similar halos. Thus, we simulate not just
one realization at ultra high resolution, but rather a sample
of (currently) 6 different halos. Our ambition is to redefine

§ The Virgo Consortium is an international collaboration of as-
tronomers working on supercomputer simulations of cosmic struc-
ture formation, see http://www.virgo.dur.ac.uk
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Figure 28. Subhalo characteristic density (which is a measure of concentration) as a function of maximum circular velocity (left panel)
and subhalo mass (right panel). We show results for all halos in the r50 radius, as well as separately for the inner halo within 50 kpc, and
for an outer shell between 300 kpc and r50. The solid line in the left panel gives an extrapolation of the result which Neto et al. (2007)
quote for halos in the Millennium simulation, while the dotted power law lies a factor 2.6 higher and fits our results for the subhalos
within r50. The dotted line in the right panel, δV ≃ 5.80 × 108 (Msub/108 M⊙)−0.18, is a fit to our results for all subhalos within r50.

the state-of-the-art in this field with respect to the accuracy
of the cosmological N-body simulations, and the rigour with
which quantitative statements about halo structure can be
made.

Our new simulation code GADGET-3, developed specif-
ically for the Aquarius Project, is a highly efficient, mas-
sively parallel N-body code. It offers much better scalability
to large numbers of compute cores and a higher basic speed
than its parent code GADGET-2 (Springel, 2005). It is able to
cope efficiently with the tight coupling of around 1.5 billion
particles in a single nonlinear object, split up across 1024
CPUs. Some of our simulations at resolution level 2 were
run on an even larger number of compute cores, using up to
4096 cores of a Bluegene/P computer. Here we used a novel
feature in GADGET-3 that can exploit additional compute
cores in shared-memory nodes by means of threads (based
on the POSIX pthreads library) yielding a mix of distributed
and shared memory parallelism. The ability to simulate this
high degree of clustering and nonlinearity on massively par-
allel architectures is a prerequisite for exploiting the power
of upcoming petaflop computers for the next generation of
high-precision simulations of cosmological structure forma-
tion.

The results presented above demonstrate that we have
created a remarkably accurate set of simulations, reaching
very good convergence for the dark matter density profile
and the substructure mass function over the maximum range
that could be expected. Even the location, mass and internal
structure of individual large dark matter subhalos reproduce
well between simulations of differing resolution, a level of
convergence which exceeds anything previously reported in
the literature.

The abundance of dark matter subhalos is remarkably
uniform across our halo sample when normalized to par-
ent halo mass, and when considering subhalos sufficiently
small that fluctuations due to counting statistics are unim-
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Figure 29. Subhalo concentration as a function of radius, for

subhalos with maximum circular velocity larger than 2.5, 5, or
10 km s−1. The dotted line is a fit to our result for the 5 km s−1

sample, which yields δV ≃ 3.77 × 106 (r/kpc)−0.63. For compari-
son, we have also included the result quoted recently by Diemand
et al. (2008) for the Via Lactea II simulation, which selected sub-
halos with Vmax > 5 km s−1. Clearly, our subhalos are more con-

centrated than theirs at the same circular velocity.

portant. The differential subhalo mass function is tilted to
a slope slightly shallower than the critical value −2, so that,
even when extrapolated to arbitrarily small masses, the to-
tal mass fraction in substructures remains small, less than
3% within 100 kpc of halo centre, and less than 20% within
r50 ∼ 400 kpc. Adopting the logarithmically divergent slope
−2 (which our results appear to exclude) does not increase
these mass fractions by more than a factor of 2 or 3 for lower
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mass limits in the range 10−6 to 10−12, M⊙, which plausibly
correspond to the thermal free-streaming limit if the dark
matter is the lightest sypersymmetric particle. The inner
halo is dominated by a smoothly distributed dark matter
component, not by substructure.

Independent of their present mass, substructures have
a strong preference to be found in the outer regions of halos.
For example, we estimate that at most a fraction of 10−3 of
the dark matter at the Solar circle is in bound subclumps.
The rest is smoothly distributed. Note, however, that this
smooth component is expected to have a rich structure in ve-
locity space, being composed of a large number (perhaps 105

or more) of cold streams (Helmi et al., 2003; Vogelsberger
et al., 2008).

Contrary to previous claims, we find that substructure
in subhalos is not a scaled-down version of substructure in
main halos. Subhalos typically have less substructure than
main halos. This is due to two causes. Tidal stripping re-
moves the outer substructure-rich parts of halos when they
fall into a larger system and become subhalos. In addition,
as the retained substructure ages it decreases in mass and
number and is not replaced by the infall of new objects. As
a result, the substructure mass fraction in subhalos is often
much smaller than in main halos, particularly for subhalos
in the inner regions which are the most heavily stripped and
also, typically, the “oldest”.

We have presented the first detailed convergence study
of the shape of subhalo density profiles to be based on sim-
ulation sets where the same subhalo can be identified in
simulations of differing mass resolution. We find that the
inner regions of subhalos, well inside their tidal truncation
radii, can be well fit by NFW or Einasto profiles. Einasto
fits are typically preferred, even when the shape parameter
α is fixed to a standard value, e.g., α = 0.18. We have also
studied how the local logarithmic slope of the density pro-
file varies with radius, finding profiles to become gradually
shallower towards the centre with no sign of approaching
an asymptotic power-law behaviour. This is very similar to
the behaviour of the central cusp in isolated dark matter
halos (Navarro et al., 2004). (We will address main halo
cusps using the Aquarius simulations in a forthcoming pa-
per, Navarro et al., 2008). We find many subhalos for which
the slope at the innermost converged point is substantially
shallower than −1.5, and a few where it is shallower than
−1.2. The Moore profile appears firmly excluded as a de-
scription of the inner regions of subhalos. It should not be
used when modelling the cold dark matter annihilation sig-
nal, as in a number of recent papers (e.g. Baltz et al., 2008).

The concentration of subhalos is higher than that of
halos of the same circular velocity or of the same mass in
the field. This can be understood as a consequence of tidal
truncation and mass loss (Kazantzidis et al., 2004; Bullock
& Johnston, 2005; Peñarrubia et al., 2008) which lead to
a larger reduction of Vmax than of rmax. Interestingly, we
find that the relationship between rmax and Vmax for field

halos is very well fit by the fitting function given by Neto
et al. (2007) for the Millennium simulation, even though this
involves an extrapolation over many orders of magnitude
towards lower mass. At the same maximum circular velocity,
we find that the rmax values of subhalos are, on average, only
62% of those of field halos.

We note that our results disagree with those of the re-

cent Via Lactea I and II simulations (Diemand et al., 2007a;
Madau et al., 2008; Diemand et al., 2008; Kuhlen et al.,
2008) on several important points. We find substantially
more substructure than reported for the Via Lactea simula-
tions, and the discrepancy with Via Lactea I is larger than
the expected halo-to-halo scatter, based on our own simu-
lation set. Our subhalos are also more concentrated than
those found in the Via Lactea II simulation. We also differ
in our conclusions about the amount of (sub-)substructure
in subhalos, which we demonstrate to be less than predicted
by the hypothesis that subhalos are tidally truncated, but
otherwise scaled-down versions of field halos. Finally, we dis-
agree with the claim of Diemand et al. (2008) that subhalos
have central power-law cusps with a mean slope of −1.2.

In future work, we will analyze the detailed formation
history of the ‘Aquarius’ halos and the evolution of their
substructure. We will also build a new generation of semi-
analytic models to follow the evolution of the baryonic com-
ponent, and we will compare these with full hydrodynam-
ical simulations of these same halos that we have already
begun to carry out. This should bring new insights into
galaxy formation, and directly address possible small-scale
challenges to the ΛCDM theory. The verdict about whether
CDM works on such scales is still pending.
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Peñarrubia J., Navarro J. F., McConnachie A. W., 2008, ApJ,
673, 226

Power C., Navarro J. F., Jenkins A., et al., 2003, MNRAS, 338,
14

Reed D., Governato F., Quinn T., Gardner J., Stadel J., Lake G.,
2005, MNRAS, 359, 1537

Seljak U., Zaldarriaga M., 1996, ApJ, 469, 437

Shaw L. D., Weller J., Ostriker J. P., Bode P., 2007, ApJ, 659,
1082

Springel V., 2005, MNRAS, 364, 1105

Springel V., Hernquist L., 2002, MNRAS, 333, 649

Springel V., White S. D. M., Frenk C. S., et al., 2008, Nature,
submitted

Springel V., White S. D. M., Jenkins A., et al., 2005, Nature, 435,
629

Springel V., White S. D. M., Tormen G., Kauffmann G., 2001a,
MNRAS, 328, 726

Springel V., Yoshida N., White S. D. M., 2001b, New Astronomy,
6, 79

Starobinsky A. A., 1982, Physics Letters B, 117, 175

Stoehr F., 2006, MNRAS, 365, 147

Stoehr F., White S. D. M., Springel V., Tormen G., Yoshida N.,
2003, MNRAS, 345, 1313

Stoehr F., White S. D. M., Tormen G., Springel V., 2002, MN-

RAS, 335, L84
Strigari L. E., Bullock J. S., Kaplinghat M., Diemand J., Kuhlen

M., Madau P., 2007a, ApJ, 669, 676

Strigari L. E., Koushiappas S. M., Bullock J. S., Kaplinghat M.,
2007b, Phys Rev D, 75, 8, 083526

Tormen G., Diaferio A., Syer D., 1998, MNRAS, 299, 728
Vogelsberger M., White S. D. M., Helmi A., Springel V., 2008,

MNRAS, 385, 236
Wambsganss J., Bode P., Ostriker J. P., 2004, ApJL, 606, L93
Wang J., De Lucia G., Kitzbichler M. G., White S. D. M., 2008,

MNRAS, 384, 1301

Warren M. S., Quinn P. J., Salmon J. K., Zurek W. H., 1992,
ApJ, 399, 405

White S. D. M., 1996, in Cosmology and Large-Scale Structure,

edited by R. Schaefer, J. Silk, M. Spiro, J. Zinn-Justin, Dor-
drecht: Elsevier, astro-ph/9410043

White S. D. M., Frenk C. S., 1991, ApJ, 379, 52
White S. D. M., Rees M. J., 1978, MNRAS, 183, 341
Zentner A. R., Bullock J. S., 2003, ApJ, 598, 49

c© 0000 RAS, MNRAS 000, 000–000


