
Using database reader plug-ins for VisIt

Max Knötig

September 28, 2010

Abstract

The author presents his work done from beginning of April until the end of
September 2010 at MPA in the Group of Fritz Röpke. This was to write a
database reader plug-in for the visualization program VisIt, in order to read
in the output format of LEAFS. The work later was extended to two other
database formats, namely the tracer file format of LEAFS and the flexible LHC
file format used by Fabian Miczek and Philipp Edelmann.

Contents

1 Introduction 2

2 The plug-ins 3
2.1 Getting the plug-in . 3
2.2 It does not work! . 3
2.3 Uninstalling the plug-in . 4
2.4 The snI plug-in . 5
2.5 The tracer plug-in . 6
2.6 The lhc plug-in . 7

3 Python interface 8
3.1 Introduction . 8
3.2 Using a Python interpreter . 8
3.3 Examples of scripts . 9

3.3.1 snI movie . 9
3.3.2 Simple tracer movie . 10

4 Creating a plug-in 12
4.1 Code skeleton . 12
4.2 The body . 13
4.3 Debugging . 13
4.4 Using the visit-plugin tool for packing the plug-in 14

1

Chapter 1

Introduction

This document is meant to help you to use my VisIt plug-ins for your work.
There are three plug-ins so far, have a look at the Chapters 2.4, 2.5, 2.6. I want
to first mention the websites and other sources of information which helped me
out

• https://wci.llnl.gov/codes/visit/

• http://www.visitusers.org/

• http://www.visitusers.org/forum/forum.pl

which has manuals covering a the dataanalysis, the Python interface and how
to get data into VisIt. The first link is the official VisIt website. The second
link leads to the VisIt Wiki. The third link is the user forum. The next link
is the VisIt 1.10 Source Code Documentation. There is so far (28.09.2010) no
newer version.

• http://www.visitusers.org/visit/1.10.0/doxygen/

2

https://wci.llnl.gov/codes/visit/
http://www.visitusers.org/
http://www.visitusers.org/forum/forum.pl
http://www.visitusers.org/visit/1.10.0/doxygen/

Chapter 2

The plug-ins

2.1 Getting the plug-in

First I will show you how to download your plug-in for your version of VisIt.
The tarballs lie within the supernova repository and you will need access to it.
Check out a copy of the repository (or just parts of it) like:

• svn co http://www.mpa-garching.mpg.de/svn/noether-group/sncode/trunk

You can find the plug-ins in the subfolder

• sncode/code/visit/version1.12

• sncode/code/visit/version2.0

The plug-ins are packed and end with tar.gz. To install version 1.12 plug-ins
type:

• visit_plugin -i <plugin-name>

where <plugin-name> is something like ‘lhc’ or ‘snI’. For VisIt vers. 2.1 plug-ins
please refer to 2.2. Do not include the ‘.tar.gz’ in the plug-in’s name commands.
The visit_plugin is a script from your version of VisIt. It compiles the code
inside the plug-in.tar.gz into a directory on your hard disk. Make sure this
script is from the sameinstallation (architecture and version number.) as the
VisIt you later make plots with. The directory for compiled plug-ins is

• ~/.visit/linux-x86_64/plugins/databases

The architecture (linux-x86_64) of the computer may be different in your
case.

2.2 It does not work!

If the visit_plugin tool is not available, or fails for some reason, you may need
to use the manual approach and follow these steps. Untar the plug-in tarball:

• tar -xzf <plugin-name>.tar.gz

3

To install:

• cd <plugin-name>

• xml2makefile -clobber <plugin-name>.xml

• make

On AIX und the xlc compiler (e.g. the cluser vip) you need to manually add
-q64 to the LDFLAGS in the Makefile.

2.3 Uninstalling the plug-in

To UNinstall...

• visit_plugin -u <plugin-name>

Alternatively, you can UNinstall the plugin by explicitly removing all of the
relevant .so’s from the .visit directory in your home directory:

• cd ~/.visit/<arch>/plugins/databases

• find . -name ’*<plugin-name>*.so’ -exec rm {} \; -print

4

2.4 The snI plug-in

The snI plug-in produces a plot when opening the *.000 file of a time step. To
install it please refer to the Section 2.1. It has no MT (multi timesteps) included,
and is the only plug-in that does not support the timebar. The plug-in reads in
the scalars and eventually the velocity vectors. Please refer to the excellent
tutorial VisIt Getting Started Manual for making your plot pretty. I will give
a brief introduction to the Python scripts for making movies in Section 3.3.
Fig 2.1 shows a deflagation model of a suoernova. It is a contour plot of the
levelset at lvlset = 0, which corresponds to the flamefront.

Figure 2.1: A supernova in VisIt. Contour plot of the levelset at lvlset = 0,
which corresponds to the flamefront

5

2.5 The tracer plug-in

We use tracers in a post-process to calculate the abundances of ejecta in a su-
pernova. These tracers are particles advected in the hydro code and form a
irregular mesh. The tracer format is still under development may therefore be
outdated when you read this. If so go to the Chapter 4 and change the code
directly (but first ask around, whether somebody has an update). The plug-in
reads the ‘.tracer’ file and the time slider can be used. This plug-in is MT (multi
time). You can start making your movies in the movie wizard, but it is also
possible to script the process.
The new VisIt versions have brought some major improvements. The Selection
window was added so users can create selections. A selection is a set of cells
created by a plot. This feature is interesting for example to plot the cells over
time which will become the most metal-abundant ones. Refer to the release
notes for VisIt 2.1 for further information.
Fig. 2.2 shows a delayed detonation model. There is a transition from deflaga-
tion to detonation at about one second after ignition. The bubbles rising from
the surface are expanding detonations.

Figure 2.2: The tracers in VisIt. The plot shows the temperature of the tracers
in a delayed detonation SNI model (DDT)

6

2.6 The lhc plug-in

The lhc format was introduced by Phillip and Fabian in order to specify a flexible
data format. The plug-in was created using Philipp’s C library for reading *.lhc
files. The plug-in is single time(ST) but it is easy to activate the timebar. In
order to scroll in time one needs to group the files before opening them. This is
done in VisIt’s Select File menu.

Figure 2.3: The lhc plug-in in action

VisIt is able to read VTK files (a standard 3D data format) and the LHC
code has routines for producing those. This is a further option in getting data
into VisIt: producing compatible files.

7

Chapter 3

Python interface

To speed up the process of plotting you may want to use Python with VisIt.
This section explains how to start VisIt via Python and how to write and ex-
ecute scripts. This Chapter covers a few parts of the VisIt Python Interface
manual. The interface itself is subject to change, and future updates may add
functionality to it.

3.1 Introduction

To start VisIt using the command line interface type:

• visit -cli

The functions in the GUI have Python bindings and you can use them in
this interface. To load your data and plot eg. the density in a pseudocolor plot
type:

OpenDatabase("<path to your data>/snddo015.000")
AddPlot("Pseudocolor","density")
DrawPlots()

This will open your data and add a plot to the stack of plots. The last com-
mand draws it. tTo alter the options of a plot or operator, add more windows,
etc. . . look up the Python Interface Manual.
It is also possible to script the commands into one file and execute it. This will
lead us to the movie scripts in the next sections. Type the following in order to
execute a script

• visit -cli -s <pathtoscript>/script.py

3.2 Using a Python interpreter

Here are some notes about using the VisIt Python API with a standard Python
interpreter (not the VisIt CLI that comes with VisIt). In order for Python
to load VisIt’s Python interface, it must know where to find visitmodule.so.
There are different ways to do this but the simplest is to append to sys.path.
The sys.path list contains the paths that Python will search when looking for

8

modules. To make sure that VisIt’s Python module is located when we do
‘import visit’ or ‘from visit import *’, we need to append the path to VisIt’s
visit.so front end module. This can be done using the following code:

import sys
sys.path.append("<pathtovisit>/linux-x86_64/lib")
import visit
visit.Launch()

Note the use of linux-x86_64 in the path. You may need to use linux-
intel or darwin-i386, depending on your platform. There are two ways that you
might import VisIt’s symbols into Python. The first way adds the visit module
to Python and requires you to add a visit. prefix to all function calls.

you could do this:
import visit
visit.Launch()

The second way adds the visit module’s symbols to the global Python names-
pace, mirroring what the VisIt CLI does.

or, you could do this:
from visit import *
Launch()

One has to Launch() in the directory of the VisIt script.

3.3 Examples of scripts

In order to make a movie you need to produce a large amount of frames from
your data. You could use the built in movie maker or use scripts. The following
are two scripts I have written, which create a set of pictures along timesteps.
This may be used in ffmpeg.

3.3.1 snI movie

There is a lot of existing Python code in the VisIt Wiki, have a look at

• http://www.visitusers.org/index.php?title=Using CLI

This is how to make a movie out of your data. VisIt provides two ways to
access a set of single time-state files as a single time varying database. The first
method is a ‘.visit’ file, which is a simple text file that contains the names of
each file to be used as a time state in the time-varying database. The second
method uses ‘virtual databases’, which allows VisIt to exploit the file naming
conventions:

OpenDatabase("/usr/gapps/visit/data/wave.visit" 0)
OpenDatabase("/usr/gapps/visit/data/wave*.silo database")

This leads to the movie script for the snI output format. First, create a
*.visit file containing all the timesteps that you need in order to make a smooth
movie. This looks like:

9

http://www.visitusers.org/index.php?title=Using_CLI

<path to snI>/snddo030.000
<path to snI>/snddo031.000
.
.
.

An example script script which will render the enery and save all the pictures
to the hard disk is outlined below:

#Opent the set and jump to the first timestep
OpenDatabase("<path to your *.visit file>/files.visit", 0)

AddPlot("Volume", "energy")
p = VolumeAttributes()

#RayCast option
p.rendererType = 2
SetPlotOptions(p)
DrawPlots()

Set the save window attributes
s = SaveWindowAttributes()
s.format = s.JPEG
s.progressive = 1
s.fileName = "test"
s.saveTiled = 1
SetSaveWindowAttributes(s)

#save every frame
for state in range(TimeSliderGetNStates()):

SetTimeSliderState(state)
SaveWindow()

3.3.2 Simple tracer movie

This one opens a *.trace file and renders the tracer temperature for different
time steps. It renderes only every 6th step.

OpenDatabase("../output/sndd000.trace")

#Add a plot and make it pretty
AddPlot("Pseudocolor", "tracer_temperature")
p = PseudocolorAttributes()
p.opacity = 0.25
SetPlotOptions(p)
DrawPlots()

Set the save window attributes
s = SaveWindowAttributes()
s.format = s.JPEG
s.progressive = 1

10

s.fileName = "test"
s.saveTiled = 1
SetSaveWindowAttributes(s)

Render pics and save them
for state in range(TimeSliderGetNStates())[::6]:

SetTimeSliderState(state)
SaveWindow()

11

Chapter 4

Creating a plug-in

To create a plug-in from scratch you could start by reading the Section about
Database plug-ins in How to get data into VisIt.

4.1 Code skeleton

This section covers only information not available in the GettingDataIntoVisit
manual. The basic idea is to create a VTK object and pass it to the com-
puting engine. A VTK array is in Fortran order (the first index is the fastest
varying). Start by creating a code skeleton with the helper xmledit. For help

Figure 4.1: XMLEdit with some suitable entries

how to deal with the xml file created consult Section 3.2 of Creating a database
reader plug-in in the Getting Data into VisIt manual. To import external li-
braries, add the files to MDServer Files and Engine Files. Don’t forget to add

12

your avt<plugin>FileFormat.C as well, since the program will erase it from
MDServer Files and Engine Files upon checking the buttons!

Figure 4.2: Don’t forget to add the avn...FileFormat.C in MDServer Files and
Engine Files!

4.2 The body

In order to get your plug-in running edit

avn...FileFormat.C
avn...FileFormat.h

and then make or cmake . & make your plug-in, depending on the version of
VisIt. Open a file in the constructor of your plug-in class and read in the data
as VTK arrays in the methods

PopulateDatabaseMetaData
GetMesh
GetVar
GetVectorVar

You can have a look at in the source code of many plug-ins at the Source Code
Documentation.

• http://www.visitusers.org/visit/1.10.0/doxygen/

4.3 Debugging

You can start VisIt with debugging logs turned on. The logs will be written
to the current directory, so make sure you have the permission to do so. For

13

http://www.visitusers.org/visit/1.10.0/doxygen/

further information about debugging have a look at Section 4.2 of Creating a
database reader plug-in in the Getting Data into VisIt manual.
In VisIt 1.12 there is also the possibility to start VisIt using Valgrind (a tool
for memory leak detection).

./visit -valgrind --track-origins=yes

However, I found it was easier for me to split my code first into parts running
independently from VisIt and then Valgrinding them.

4.4 Using the visit-plugin tool for packing the
plug-in

The visit_plugin script can also create the tar.gz file for distribution which
used in Section 2.1. To do so clean the plug-in directory from all unnecessary
files

make clean
rm foo.C bar.C~ ...

then invoke the script in the parent directory

cd ..
visit_plugin -p <pluginnane>

If you need help do

visit_plugin

14

	Introduction
	The plug-ins
	Getting the plug-in
	It does not work!
	Uninstalling the plug-in
	The snI plug-in
	The tracer plug-in
	The lhc plug-in

	Python interface
	Introduction
	Using a Python interpreter
	Examples of scripts
	snI movie
	Simple tracer movie

	Creating a plug-in
	Code skeleton
	The body
	Debugging
	Using the visit-plugin tool for packing the plug-in

