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ABSTRACT

In this study, we present a modelling of the X-ray emission from the simulated SMBHs
within the cosmological hydrodynamical Magneticum Pathfinder Simulation, in order
to study the statistical properties of the resulting X-ray Active Galactic Nuclei (AGN)
population and their expected contribution to the X-ray flux from galaxy clusters.
The simulations reproduce the evolution of the observed unabsorbed AGN bolometric
luminosity functions (LFs) up to redshift z ∼ 2, consistently with previous works.
Furthermore, we study the evolution of the LFs in the soft (SXR) and hard (HXR)
X-ray bands by means of synthetic X-ray data generated with the PHOX simulator,
that includes an observationally-motivated modelling of an instrinsic absorption com-
ponent, mimicking the torus around the AGN. The reconstructed SXR and HXR AGN
LFs present a remarkable agreement with observational data up to z ∼ 2 when an
additional obscuration fraction for Compton-thick AGN is assumed, although a dis-
crepancy still exists for the bright end of the SXR LF at z = 2.3. With this approach,
we also generate full eROSITA mock observations to predict the level of contamina-
tion due to AGN of the intra-cluster medium (ICM) X-ray emission, which can affect
cluster detection especially at high redshifts. We find that, at z ∼ 1–1.5, for 20–40%
of the clusters with M500 > 3 × 1013 h−1 M⊙, the AGN counts in the observed SXR
band exceed by more than a factor of 2 the counts from the whole ICM.

Key words: methods: numerical – X-rays: galaxies: clusters – galaxies: active –
galaxies: quasars: supermassive black holes

1 INTRODUCTION

The presence of supermassive black holes (SMBHs) is nowa-
days known to be very common at the centre of massive
galaxies and show properties, such as total mass, that ap-
pear to be correlated to the properties of their hosts, such
as bulge stellar mass. The nuclear activity due to matter
accretion onto the central SMBH, however, is observed in
only 1–10% of the galaxies, indicating that the co-evolution
between active galactic nuclei (AGN) and host galaxy is a
very complex and intermittent process.

In the case of brightest cluster galaxies (BCGs) in
galaxy clusters, the importance of AGN activity is even
more crucial, as it affects not only the star formation activ-
ity within the BCG but also the wider environment around
it and the hot gas filling the cluster potential well, i.e.

⋆ E-mail: biffi@oats.inaf.it (VB)

the intra-cluster medium (ICM). ICM thermal and chem-
ical properties in the cores of clusters show the effects of
the central AGN, depending on its growth and evolution.
In fact, if no efficient feedback mechanism was in place at
the centre of galaxy clusters, massive cooling flows were to
be expected as a consequence of the radiative cooling of the
ICM, whose temperatures reach 107–108 K emitting in the
X-rays with typical luminosities of 1043–45 erg/s. As an ob-
servable signature of this process, we should expect large
reservoirs of cool gas in the centre of clusters, especially in
those with high-density and centrally peaked X-ray surface
brightness (cool-core clusters), resulting in considerable star
formation rates in the BCG. This so-called “cooling flow”
scenario (Fabian 1994) is however not observed and a heat-
ing mechanism able to prevent such gas radiative cooling
and star formation in the core must be in place (Peterson
et al. 2001; David et al. 2001; Peterson & Fabian 2006, and
references therein). It is commonly accepted that this role is
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played by AGN feedback (for a review, see Gitti et al. 2012,
and references therein).

Statistically, studies of the populations of AGN at dif-
ferent redshifts, for instance through the construction of lu-
minosity functions (LFs) at various wavelenghts, are partic-
ularly useful to investigate the growth history of SMBHs in
the Universe and to infer constraints on their co-evolution
with the host galaxy and the environment. Several obser-
vational campaigns have been dedicated to this scope (e.g.
Maccacaro et al. 1983, 1984, 1991; Boyle et al. 1993, 1994;
Page et al. 1996; Boyle et al. 2000; Wolf et al. 2003; Ueda
et al. 2003; Simpson 2005; Barger & Cowie 2005; La Franca
et al. 2005; Richards & et al. 2006; Bongiorno & et al. 2007;
Silverman et al. 2008; Hasinger 2008; Croom et al. 2009;
Aird et al. 2010, 2015; Assef et al. 2011; Fiore et al. 2012;
Merloni & et al. 2014; Buchner et al. 2015; Fotopoulou et al.
2016; Ranalli & et al. 2016).

Given the complexity of the phenomena, however, it is
very difficult to capture the details of the cycle regulating
the gas inflow towards the cluster centre, the accretion of
this gas onto the central SMBHs, the triggering of powerful
AGN activity and the consequent release of energy from the
AGN into the surrounding medium, that prevents further
gas accretion and quenches star formation. The possibility to
correctly model a realistic population of AGN that originates
directly from the SMBH population within a cosmological
context is the key step to study and understand the SMBH
evolution and their impact on physical properties of galaxies
and clusters.

Several theoretical works, both numerical and semi-
analytical, have also focused on the population of SMBHs
and their relation to the small-scale galactic environment,
and on the constructions of luminosity and mass functions
that are crucial to be compared against observational evi-
dences in order to interpret them as well as to validate the
modelling itself. In particular, cosmological hydrodynamical
simulations have been performed in the past two decades
with the specific purpose of studying the statistical prop-
erties of the simulated SMBHs and AGN populations, such
as LFs, within a cosmological context (e.g. Di Matteo et al.
2008, 2012; McCarthy et al. 2010, 2011; Booth & Schaye
2011; Degraf et al. 2010, 2011; Haas et al. 2013; Hirschmann
et al. 2014; Sijacki et al. 2015; Steinborn et al. 2015, 2016;
Koulouridis et al. 2017), including various different imple-
mentations of the AGN feedback model (e.g. Di Matteo et al.
2005; Springel et al. 2005; Hopkins et al. 2006; Sijacki et al.
2007; Booth & Schaye 2009; Fabjan et al. 2010; Barai et al.
2014; Steinborn et al. 2015).

Cosmological hydrodynamical simulations of galaxy
clusters have also shown how the presence of AGN feedback,
in addition to stellar one, can impact on the entropy, metal-
licity and thermal properties in cluster cores, by reducing
the amount of high density and low temperature gas in the
centre which causes excessive star formation. This eventually
contributes to a diversity of thermal and chemical proper-
ties of the cores that resemble the observed ones (e.g. Hahn
et al. 2015; Rasia et al. 2015; Martizzi et al. 2016; Planelles
et al. 2017; Biffi et al. 2017; Vogelsberger et al. 2017).

The comparison between numerical results and observa-
tional data is crucial in order to assess the reliability of the
models included in the simulations and to interpret the ob-
servational results themselves, although comparison studies

of this kind have been relatively limited so far. For a more
direct and faithful comparison, synthetic data can be de-
rived from the simulations. In a recent work, Koulouridis
et al. (2017) derived mock X-ray AGN catalogs from the
cosmo-OWLS simulation suite, in order to investigate the
demographics of the AGN population in the simulations.
They find that the unabsorbed X-ray luminosity function
accurately reproduces the observed one over 3 orders of mag-
nitude in X-ray luminosity from z = 0 out to z = 3, as well
as the Eddington ratio distribution and the projected clus-
tering of X-ray AGN.

For a realistic population of simulated BHs and AGN,
in terms of comparison to observational evidences, simula-
tions and mock X-ray data are powerful tools to constrain
the possible contribution from AGN X-ray emission to the
ICM emission of the host cluster. In fact, X-ray observations
point out the difficulty in detecting an active AGN during
its outburst phase within the BCG of a galaxy cluster. This
is essentially due to the ambiguity of disentangling the AGN
point source emission from the X-ray peak associated to the
cluster core, especially in centrally-peaked CC clusters and
at high redshift for X-ray telescopes with moderate (more
than a few arcseconds) spatial resolution. In fact, this will be
crucial for future X-ray survey instruments like eROSITA,
for which the PSF in scanning mode will be large (Half-
Energy Width ∼ 26–28” and positional accuracy of point
sources ∼ 7–15”) and will make it very difficult to resolve
the central core in CC clusters. In such cases, cluster detec-
tion can be challenging, especially at high redshift, since the
instrument spatial resolution will not allow to distinguish
the extended diffuse emission of the ICM and, in case of
powerful AGN in cluster BCGs, the X-ray emission will be
likely associated to them rather than to the hosting cluster.
Nevertheless, if the host galaxy of the detected AGN is a
member of a massive cluster, then the X-ray emission from
the AGN can be a minor fraction of the total AGN and ICM
emission. The situation where the point source is classified as
an AGN and the cluster remains uncatalogued contributes
to the rarity of selecting active AGN at the centre of mas-
sive clusters and constitutes an important selection bias that
should be taken into account especially in future surveys. A
way to overcome this problem, by combining X-ray and op-
tical data, is presented in a recent work by Green et al.
(2017), where they look for evidences of the presence of a
rich cluster around ROSATX-ray sources identified as AGN,
by searching for overdensities in red-sequence galaxies.

In such a framework, we aim at investigating the pop-
ulation of SMBHs in the Magneticum Pathfinder Simula-
tion (see Section 2) in terms of X-ray LFs and their evolu-
tion with redshift, in comparison to observational findings.
Given a realistic AGN population, we ultimately intend to
use simulations to predict the importance of AGN contami-
nation to the X-ray luminosity and observed emission from
galaxy clusters. To this scope, we set up a model for the
AGN X-ray emission that accounts for both intrinsic ab-
sorption and luminosity- and redshift-dependent obscura-
tion fractions, and finally construct synthetic observations
of the simulated clusters with AGN. We consider the in-
strumental specifications of the up-coming X-ray satellite
eROSITA in order to predict the relative contribution from
AGN and ICM to the observed X-ray fluxes, which will affect
the detection of galaxy clusters out to redshifts 1–1.5.
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More specifically, the paper is organized as follows. In
Section 3 we first discuss the theoretical modelling of the
AGN bolometric emission, from which we reconstruct the
bolometric LFs, and then apply observationally-motivated
bolometric corrections to derive the AGN intrinsic luminosi-
ties in the soft ([0.5–2] keV) and hard ([2–10] keV) X-ray
band (hereafter: SXR and HXR, respectively). As a step
further, we apply an X-ray photon simulator to the simula-
tions to simultaneously mimic the X-ray emission from both
cluster ICM and AGN sources, following the approach out-
lined in Section 4. In Sections 5 and 6 we present our main
results on the reconstructed SXR and HXR AGN LFs, with
and without intrinsic absorption, and on the relative contri-
bution of AGN in clusters with respect to the X-ray emis-
sion from the diffuse ICM, as expected in particular from
eROSITA observations. Finally, we draw our conclusions in
Section 7.

2 COSMOLOGICAL HYDRODYNAMICAL

SIMULATIONS

In this work we use one of the simulations that are part of the
Magneticum Pathfinder Simulation.1 In particular, the sim-
ulation used comprises a comoving volume of 352 h−1 Mpc
and a mass resolution of mDM = 6.9 × 108 h−1 M⊙, for the
dark matter (DM) component, and mg = 1.4× 108 h−1 M⊙,
for the gas. We refer to this run as Box2/hr (see also
Hirschmann et al. 2014), where hr denotes the high resolu-
tion of the run (initially resolved with 2 × 15643 particles).
The cosmology adopted refers to the 7-year WMAP results,
that is we assume h0 = 0.704, for the scaled Hubble param-
eter, and Ω0M = 0.272 and Ω0Λ = 0.728, for the matter and
Cosmological constant density parameters. Also, we set the
initial power-spectrum index to n = 0.963 and normalize it
to σ8 = 0.809.

2.1 The numerical code

These simulations have been performed with the parallel
TreePM-SPH code Gadget-3, an extended version of the
Gadget-2 code presented in Springel (2005). This includes
an entropy-conserving formulation of the SPH (Springel &
Hernquist 2002), a higher order kernel based on the sixth-
order Wendland kernel (Dehnen & Aly 2012) with 295 neigh-
bors, a low-viscosity scheme and a treatment for artificial
diffusion that allow for a better treatment of turbulence
and gas mixing (Dolag et al. 2005; Beck et al. 2016). The
code also accounts for the treatment of a wide range of
physical processes governing the evolution of the baryonic
component. In fact, it accounts for metal-dependent radia-
tive cooling (following Wiersma et al. 2009), for the pres-
ence of the cosmic microwave background (CMB) and of
a UV/X-ray uniform ionizing background radiation from
quasars and galaxies, as computed by Haardt & Madau
(2001). Star formation and feedback from galactic winds
driven by supernovae (SN) explosions (with a velocity of
350 km/s) are implemented following the original formu-
laiton by Springel & Hernquist (2003), and a description

1 Simulation project webpage: www.magneticum.org.

for black hole (BH) growth and feedback from active galac-
tic nuclei (AGN) is also incorporated (Fabjan et al. 2010).
The code comprises as well a detailed model for chemical en-
richment, where the production of heavy elements is imple-
mented according to proper stellar population life-times and
yields, for supernovae type Ia (SNIa) and type II (SNII), and
for intermediate- and low-mass stars in the asymptotic giant
branch (AGB) phase (see Tornatore et al. 2003, 2007). The
metal cooling and enrichment is followed by tracking directly
11 metal species (H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe). Ad-
ditionally, we include isotropic (physical) thermal conduc-
tion (with 1/20 of the classical Spitzer value) (Dolag et al.
2004) and passive magnetic fields (Dolag & Stasyszyn 2009).

3 MODELLING THE AGN X-RAY EMISSION

In this section we describe the theoretical estimation of AGN
bolometric, SXR and HXR luminosities from the simula-
tions, and present results on the bolometric AGN LFs.

3.1 Theoretical estimation of the AGN luminosity

The bolometric luminosity associated to any AGN source in
the simulation can be calculated starting from the principal
BH properties traced directly by the simulation itself, such
as its mass and (large-scale) accretion rate, and by assuming
some efficiency value (εr).

In the standard scheme used to estimate the (bolomet-
ric) radiated luminosity from accretion onto a BH, we have:

Lrad =
εr

1− εr
Ṁc2, (1)

where typically εr = 0.1 (see e.g. Maio et al. 2013, and
references therein).

Alternatively, one can choose a more detailed modelling
that takes into account the specific accretion phase which
the AGN source is undergoing, determined according to its
BH accretion rate (BHAR). Namely, the BHAR

BHAR =
Ṁ

ṀEdd

is used to distinguish different radiation regimes, following
fig. 1 of Churazov et al. (2005). Specifically, the radiative
power (i.e. AGN luminosity) is calculated differently for ra-
diatively efficient and inefficient AGN:

Lrad

LEdd
=



















εr

(

10
Ṁ

ṀEdd

)

, if BHAR > 0.1

εr

(

10
Ṁ

ṀEdd

)2

, if BHAR < 0.1

(2a)

corresponding to the radiatively efficient (quasar) (BHAR >
0.1) and inefficient (BHAR < 0.1) regime, respectively. We
recall that the Eddington quantities read:

LEdd =
4πGmpc

σt
MBH

and

ṀEdd =
LEdd

εrc2
=

4πGmp

εrσtc
MBH .

Provided the values of MBH and Ṁ from the simulation, we
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only need to assume a value for the efficiency εr. Also in this
second approach, we use εr = 0.1.

For any BH particle in the simulation, we can therefore
compute its (bolometric) luminosity Lbol and derive lumi-
nosity functions (LFs), in order to explore the properties
of the AGN population. Here and in the following, we refer
to the bolometric luminosity Lbol as the theoretical estima-
tion of the AGN luminosity, calculated either adopting the
standard estimation or the BHAR-dependent scheme.

The AGN LFs obtained from our simulation are shown
in Fig. 1, for different redshifts between ∼ 0.1 and ∼ 2.
The three curves reported in the Figure are calculated for
the AGN sources in our simulations considering the standard
bolometric luminosity estimate Eq. (1) (“std”) or the scheme
by Churazov et al. (2005). For the latter, we consider either
the case expressed in Eq. (2a) (“CH05 (a)”) or the following
modified version, where we adopt a transition value between
radio and quasar mode of BHAR = 0.05 (see also Merloni
& Heinz 2008) (“CH05 (b)”):

Lrad

LEdd
=



















εr

(

10
Ṁ

ṀEdd

)

, if BHAR > 0.05

εr

(

14.1
Ṁ

ṀEdd

)2

, if BHAR < 0.05 ,

(2b)
where we still assume εr = 0.1. Being still a standard refer-
ence in the field, we compare the LFs from the Magneticum
Pathfinder Simulation against observational data by Hop-
kins et al. (2007), in which bolometric luminosities are ob-
tained by correcting observed luminosities in different en-
ergy bands.

From the panels in Fig. 1 we note that there is an overall
reasonable match in the redshift range 0.47 < z < 2, espe-
cially in the intermediate-high luminosity end. At redshift
higher than 1 we note a tendency to overestimate the ob-
served number of lower-luminosity clusters. Similar results
were also obtained in Hirschmann et al. (2014) for the same
set of simulations, where the authors show that a discrep-
ancy w.r.t. data rather appears at higher redshifts, z & 2.

From the comparison in Fig. 1, we conclude that in the
luminosity and redshift range where the simulation results
are in reasonable agreement with the observational data, the
“std” and both “CH05 (a),(b)” models do not differ signifi-
cantly. At low redshift, z . 1, the low-luminosity end of the
observed LFs is better reproduced by the “std” estimate.

Given these results, and for simplicity, we adopt in the
following the standard estimation given by Eq. (1) (thick
solid red curves).

3.2 Bolometric corrections: LSXR and LHXR

The estimation of Lbol is nevertheless not enough to con-
strain the AGN X-ray emission model nor to fully compare
the properties of the simulated AGN population against ob-
served datasets and LFs. Therefore, it is particularly useful
to derive X-ray luminosities in specific energy bands, namely
the SXR and HXR bands.

To this purpose, we convert the bolometric luminosities
into SXR and HXR luminosities assuming the bolometric
corrections proposed by Marconi et al. (2004), which can be

approximated by the following third-degree polynomial fits

log( LHXR/Lbol) = −1.54−0.24L−0.012L2+0.0015L3 (3)

log( LSXR/Lbol) = −1.65−0.22L−0.012L2+0.0015L3 (4)

with L = log( Lbol/L⊙) − 12, and derived for the luminos-
ity range 8.5 < log( Lbol/L⊙) < 13 (see fig. 3(b) in Marconi
et al. 2004). The reason for this choice is that the corrections
are derived from template spectra, rather than from the
average observed AGN spectral energy distribution (SED),
with the goal of obtaining an estimate of the intrinsic AGN
luminosity. This, in principle, is closer to the theoretical es-
timates of Lbol derived from simulations. In particular, the
spectral model used by Marconi et al. (2004) consists, in
the X-ray band beyond 1 keV, of a single power law, with
a typical photon index of ∼ 1.9 and an exponential cut-off
at ∼ 500 keV, plus a reflection component. The template
spectra, as well as the obtained corrections, are redshift in-
dependent.

Here and in the following, the SXR and HXR bands
are considered to be rest-frame energies, unless otherwise
explicitly stated (i.e. for the mock results in Secs. 6.2.1–
6.2.2).

4 SYNTHETIC X-RAY EMISSION

In this section we describe the modelling of the synthetic
X-ray ICM and AGN emission form the simulations, with
special attention to the AGN intrinsic absorption.

4.1 PHOX X-Ray photon simulator

In the present work we make use of the PHOX code (Biffi
et al. 2012, 2013, for further details) in order to generate X-
ray synthetic observations from the ICM and AGN sources
in the simulation. The PHOX X-ray photon simulator con-
sists of three separate modules:

• in unit 1 the ideal photon emission in the X-ray band
is computed for every emitting source by assuming a model
spectrum, which is sampled statistically with a discrete num-
ber of photons and stored in a data cube that matches the
simulation cube itself;

• in unit 2 a projection is applied, photon energies are
Doppler-shifted according to the line-of-sight motion of the
original emitting source and a spatial selection can addition-
ally be considered;

• lastly in unit 3 realistic observing time and detector
area are considered, and the ideal photon list is eventually
convolved with the specific instrumental response of a chosen
X-ray telescope.

This code has been applied to simulations of galaxy
clusters to study the X-ray properties of the hot diffuse
ICM (Biffi et al. 2012, 2013, 2014; Biffi & Valdarnini
2015; Cui et al. 2016), by modelling the X-ray emission
(bremsstrahlung continuum and metal emission lines) of the
hot gas in the simulated clusters.

Nevertheless, the very general approach adopted allows
to treat as well different X-ray sources traced by the sim-
ulations, provided that the corresponding emission model
is constrained from the simulation and included in unit 1.
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Figure 1. Bolometric AGN LFs computed for the Box2/hr at redshift z ∼ 0.1, 0.47, 0.52, 1.04, 1.48, 1.98 (from top-left to bottom-right).

Different lines refer to different estimates of the AGN bolometric luminosity: the thick solid red line — “std” — corresponds to Eq. (1),
the dashed blue line — “CH05 (a)” — to Eq. (2a) with a transition value for the BHAR of 0.1 and the thin solid black line — “CH05 (b)”
— to Eq. (2b) with a transition value for the BHAR of 0.05. For comparison we also report observational data by Hopkins et al. (2007)
(black diamonds).

Given the modular design of PHOX, the projection and con-
volution phases (unit 2 and unit 3) can be then applied to
the photon cube independently of the different nature of the
emitting source.

In this study, we present and employ an extension of
PHOX that generates the sythetic X-ray emission from
AGN-like sources included in the simulations.

4.2 ICM X-ray emission

The modelling of the synthetic X-ray emission from the ICM
in siulated clusters is done by computing the emitted X-ray
spectrum for every hot-phase gas element in the simulations,
depending on its intrinsic thermal and chemical properties
(namely density, temperature, global metallicity or singu-
lar element abundances). In particular, we assume for ev-

ery gas element a single-temperature VAPEC2 thermal emis-
sion model with emission lines due to heavy elements (Smith
et al. 2001), implemented in XSPEC

3 (Arnaud 1996).
For further details on the modelling of the ICM X-ray

emission, we refer the interested reader to the descriptions
provided in Biffi et al. (2012, 2013).

4.3 AGN X-ray emission: spectrum parameters

The modelling of the AGNX-ray emission in the PHOX code
follows a very similar approach to the one implemented for
the ICM emission. Given the BH properties calculated in the
simulation (as described in Sections 3.1 and 3.2), for each

2 See http://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XS

modelApec.html.
3 See http://heasarc.gsfc.nasa.gov/xanadu/xspec/.
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AGN source element we can constrain the particular shape
of the emission model spectrum and generate the associated
(ideal) list of emitted X-ray photons.4

The main difference in treating BH sources, instead of
gas elements, resides in the different X-ray emission model
expected. Instead of modelling the emission like a ther-
mal bremsstrahlung continuum with metal emission lines,
such as for the ICM, we need to assume a different spec-
tral model. X-ray observations show evidence that all AGN
sources share an intrinsic power law spectrum of the form
E−α, with a photon index α (e.g. Zdziarski et al. 2000)
that varies in the range 1.4–2.8 with a Gaussian distribution
peaked around ∼ 1.9–2. Thus, we assume a single, redshifted
power law:

A(E) = [K(1 + z)][E(1 + z)]−α

(

1

1 + z

)

, (5)

where K is the normalization, α is the photon index (spec-
trum slope) and z is the redshift of the source.5 Integrating
the spectrum in Eq. (5) between two observed energies, E1

and E2, one can obtain the observed flux (and then lumi-
nosity) of the source.

In order to calculate the fiducial model for every BH
source (represented by particles in the Lagrangian-based
simulations we use here) in the simulation output, it is re-
quired to estimate the spectrum normalization and slope
parameters, K and α. For each BH, these can be directly
constrained from its the global properties, as sketched in
the following.

• For any BH particle, we compute Lbol from the simu-
lation data and convert it to (rest-frame) LSXR and LHXR

through the bolometric corrections (3) and (4) (Secs. 3.1
and 3.2).

• We assume a spectrum for an AGN-like source as
in Eq. (5), so that the luminosity for a given (observed)
(E1, E2) energy band is given by:

L(E1,E2) = F

∫ E2

E1

[K(1 + z)][E(1 + z)]−α

(

1

1 + z

)

EdE,

(6)
where F is the rescaling factor to convert the flux (resulting
from the integration) into the luminosity.

• From Eq. (6), the luminosities in the (restframe) SXR
and HXR energy bands are given by:
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∫ 2/(1+z)

0.5/(1+z)
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(

1

1 + z

)
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∫ 10/(1+z)

2/(1+z)

[K(1 + z)][E(1 + z)]−α

(

1

1 + z

)

EdE

,

(7)
where LSXR and LHXR are the values estimated from the
simulation. In order to mimic the observed scatter in these
relations, we also add to both LSXR and LHXR a Gaussian
scatter with σ = 0.1, in logaritmic scale.

4 Simulation data from the Magneticum Pathfinder Simulation
and the associated ICM and AGN synthetic X-ray data have been
made available through the Cosmological Web Portal presented
in Ragagnin et al. (2017) (http://c2papcosmosim.srv.lrz.de/).
5 Eq. (5) adopts the notation of the redshifted power-law model
defined within the XSPEC package.

1.7 1.8 1.9 2.0 2.1
α
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0.2

0.4
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0.8

1.0 z = 2.33

z = 1.18

z = 0.47

z = 0.10

ref distribution (obs)

Figure 2. Distribution of the slopes computed for the emission
spectra of the AGN in the simulations used in PHOX unit 1,
for various redshifts between 0.1 and 2.3, as in the legend. For
comparison, we also report the typical distribution expected from
observations (orange dashed line).

• Solving the system of equations (7), we can constrain
the specific values for K and α.

In Fig. 2 we show the reconstructed distributions of
slopes found by our approach from the AGN in the sim-
ulation box analysed with PHOX. In the figure, we show
the distribution for 4 example simulation snapshots between
z ∼ 0.10 and z ∼ 2.3. The result seems in broad agreement
with the typical expectations from the observed distribution
(which we consider centered on α = 1.9 — long-dashed or-
ange line). We note nevertheless a mild shift of the distribu-
tion peak towards lower α values from z ∼ 2 to z ∼ 0. This
is likely related to the redshift evolution of the LFs, which
are used together with bolometric corrections to constrain
the slope.

By reconstructing the normalization and slope, K and
α, for every BH we are able to compute the corresponding
AGN spectrum by adopting the zpowerlw model embedded
in the XSPEC package. This can be assumed to well represent
the intrinsic power-law emission of the source in the energy
range interesting for this work (< 50 keV).

4.3.1 Absorption

As suggested by many observational works, AGN sources
also show evidences for the presence of obscuring material
(i.e. the torus) in the vicinity of the central BH, which causes
a partial absorption of the emitted radiation. Therefore, any
modelling using a pure power law is too simplistic to mimic
the observed properties of AGN and, even in the simplest
case, it is required to account for an intrinsic absorption
component.

Indeed, the bolometric AGN luminosities from our sim-
ulations have been compared in Section 3.1 to the observa-
tional results by Hopkins et al. (2007), in which the authors
applied corrections to account for absorption and convert
the observed luminosity into the intrinsic, bolometric one.
Yet, in order to compare the SXR and HXR LFs of the AGN
from the simulation to observed data, the correction for —
or modelling of — obscuration is particularly important.
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Several observational studies have focused on the char-
acterization of the absorption depending on the source lu-
minosity, and redshift (see, e.g., studies by Hasinger 2008;
Merloni & et al. 2014; Buchner et al. 2014, 2015; Fotopoulou
et al. 2016; Ranalli & et al. 2016). The correction of in-
strinsic luminosities predicted by numerical studies by tak-
ing into account such observationally-motivated obscuration
fractions has been for instance employed by Hirschmann
et al. (2014), showing reasonable match between simulations
and observations. Despite the large debate that still persists
on the poorly constrained bolometric corrections and on the
uncertainties on the fraction of obscured AGN, numerical
studies have shown the importance of considering both in
order to compare simulation-derived LFs and observational
ones (see, e.g., recent works by Hirschmann et al. 2014; Si-
jacki et al. 2015; Koulouridis et al. 2017)

Here, however, we follow a different approach. Instead
of correcting for absorption in the SXR and HXR LFs sepa-
rately, following observed predictions, we rather assume an
intrinsic absorption component for every AGN source in the
simulation, with the aim of accounting for the effect of an
obscuring torus present around the central BH.

In our implementation, the specific value of the obscurer
column-density (NH) is assigned to each AGN source in a
probabilistic way, by assuming the estimated column-density
distribution of the obscurer obtained in the study by Buch-
ner et al. (2014) (see top-left panel of fig. 10, in their pa-
per) from a sample of 350 X-ray AGN in the 4Ms Chandra
Deep Field South. There, the authors analyse the AGN X-
ray spectra and reconstruct the distribution of NH by using
a detailed model for the obscurer, whose geometry is sug-
gested to be compatible with a torus with a column density
gradient, where the line-of-sight obscuration depends on the
viewing angle and the observed additional reflection origi-
nates in denser regions of the torus.

Within the PHOX code, we include this in the construc-
tion procedure of the X-ray emission model from AGN-like
sources. In particular, an intrinsic absorption component (at
the redshift of the source) is added to the main power-law
spectrum, together with the Galactic foreground absorption
(which is the same for all the sources). For simplicity, we
use a zwabs absorption component (at the redshift of the
source) to represent the obscuring torus.

The complete model used to mimic the X-ray emission
from AGN sources in the simulation (i.e. from BH particles)
therefore is:

wabs× zwabs× zpowerlw , (8)

where the first wabs represents the foreground Galactic-
absorption component.

5 RECONSTRUCTED SXR AND HXR LFS

In Fig. 3 we present the results of the modelling described in
the previous subsections on the estimation of the SXR and
HXR LFs and their comparison to observational data.

In order to purely test the reliability of our treatment of
AGN emission model and intrinsic obscuration, and to dis-
cuss it in comparison to observations, we do not construct
at this stage complete mock observations for a given X-ray

instrument. Simply, we consider the ideal photon list, gen-
erated from PHOX unit 1, for each AGN in the simulated
cosmological volume. For the purpose of this test, we set
the foreground Galactic absorption to zero, so that the ideal
photons obtained from PHOX unit 1 can directly be used
to calculate soft and hard X-ray LFs. Fiducial values for col-
lecting area and observing time are significantly larger than
realistic observational parameters, namely A = 2e3 cm2 and
τ = 50 ks, respectively. This allows for luminosity estimates
that closely resemble theoretical expectations. As assumed
above, we construct the LFs for the rest-frame SXR and
HXR energy bands, i.e. we integrate the flux from the ob-
served photon lists within the redshifted energy bounds.6

For different redshifts, from z ∼ 0.1 up to z ∼ 2.3, we
compare in Fig. 3 the SXR and HXR LFs build from the
simulation without any absorption (dotted black curves),
the ones reconstructed from PHOX (therefore accounting
for torus absorption as described above; solid red curves)
and the observational data presented by Aird et al. (2010)
and Hasinger et al. (2005) (blue stars and green triangles,
respectively).

Interestingly, the intrinsic-absorption modelling
(“PHOXU1 (torus obsc)” in Fig. 3) naturally improves the
comparison between simulations and observations, both in
the soft and in the hard X-ray bands, at the same time.
In fact, while the simulated LFs typically over-estimate
the number of AGN at all luminosity scales, the curves
obtained from PHOX, including the intrinsic absorption,
tend to shift towards the observed data points, with a more
prominent effect and a better outcome in the SXR than in
the HXR. This results in an overall good agreement with
observations, especially at intermediate-high redshifts and
luminosities & 1043 erg/s.

This evidence stresses the reliability of our implementa-
tion, as in fact by assuming an observational-based distribu-
tion of intrinsic absorption for the torus around each AGN
source in the simulations (whose scales cannot be directly
probed due to resolution limits), we can statistically bet-
ter reproduce the observed LFs, not only in the HXR band
from which the observed distribution is derived, but also in
the SXR band. In the following analysis, for the purpose of
generating synthetic observations of clusters including ICM
and AGN emission, we will use for the AGN component this
model including instrinsic torus-like absorption (“PHOXU1
(torus obsc)” in Fig. 3).

While some recent observational studies devoted to re-
constructing LFs of AGN, and their evolution with redshift,
comprise both absorbed and unabsorbed AGN (Buchner
et al. 2014; Aird et al. 2015), other explicitely refer to unab-
sorbed (type I) AGN, as for the LFs by Hasinger et al. (2005)
reported in Fig. 3. According to observational evidences, the
fraction of asborbed AGN depends on both luminosity and
redshift (e.g. Ueda et al. 2003, 2014; La Franca et al. 2005;
Simpson 2005; Hasinger et al. 2005; Hasinger 2008). As an
additional test, and for the only purpose of comparison to
data, we derive LFs from PHOX considering also a statis-
tical obscuration fraction that depends on the source SXR

6 Namely, [E1–E2] and [E2–E3], with E1 = 0.5/(1+z) keV,E2 =
2/(1+ z) keV and E3 = 10/(1+ z) keV, for SXR and HXR bands
respectively.
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Figure 3. SXR (l.h.s. column) and HXR (r.h.s. column) AGN LFs, un-absorbed (pure simulation prediction, dotted black line) and with
intrinsic torus absorption following Buchner et al. (2014) (obtained from PHOX, thick solid red line). In the LFs derived from PHOX
also the (soft)luminosity- and redshift-dependent absorption by Hasinger (2008) is included, in addition to intrinsic torus absorption, in
Model A (dot-dot-dashed black line). For comparison, observed SXR and XHR LFs from Aird et al. (2010) (blue stars) and Hasinger
et al. (2005) (blue triangles) are marked. From top to bottom, the panels refer to different redshifts z ∼ 0.1, 0.3, 0.6, 1.2, 2.3.
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luminosity and redshift, following Hasinger (2008), where
the fraction of obscured AGN (fobsc), at z < 2, is given by:

fobsc(z, LSXR) = −0.281 (log(LSXR)− 43.5)+0.279 (1+z)β,
(9)

with β = 0.62 providing the best fit to their bservational
data. For higher redshifts, z > 2, the value of fobsc remains
approximately the same as for z = 2:

fobsc(z, LSXR) = −0.281 (log(LSXR)− 43.5) + 0.551. (10)

In Fig. 3 we also report the LFs derived with this ap-
proach, marked as Model A (black, dot-dot-dashed lines).
Essentially, we apply the relations (9) and (10) to the in-
trinsic LSXR, as predicted by the simulations, in order to
stochastically decide whether the AGN will be obscured or
not, depending on its luminosity and redshift. Only the un-
obscured AGN are then processed with PHOX, assuming a
torus absorption (from theNH distribution by Buchner et al.
(2014)) as well, in order to compute the LFs.

With respect to the LFs derived from PHOX including
the torus absorption without any luminosity and redshift
dependency, theModel A produces a decrease, at all redshift,
in the LFs at the low-luminosity end (LSXR . 1043 erg/s
and LHXR . 1044 erg/s), where absorption effects are more
severe, whereas no significant change is observed in the high-
luminosity tail. In general, this additional modelling of the
luminosity- and redshift-dependent obscuration, combined
with the intrinsic absorption implemented within PHOX,
contributes to further improve the comparison against the
observed luminosity functions reported in Fig. 3, not only for
the SXR-band LFs but also for the HXR LFs. The improved
agreement with observed LFs is particularly evident in the
low redshift bins.

These results suggest that both the intrinsic torus ab-
sorption and the luminosity- and redshift-dependent obscu-
ration fraction are required in order to improve the compar-
ison with observed LFs on unobscured AGN.

6 ICM AND AGN X-RAY EMISSION IN

SIMULATED CLUSTERS

In this section we present the simulation results on the X-ray
emission from AGN in galaxy clusters, and its contribution
to the global X-ray emission from the ICM.

Simulated data set

We extract a sample of cluster-size haloes, at various cos-
mic times, from the Box2/hr cosmological volume of the
Magneticum Pathfinder Simulation set. Specifically, we se-
lect all the haloes with M500 > 3×1013 h−1 M⊙, at 9 redshift
snapshots between z ∼ 0.07 and z ∼ 2, obtaining therefore
catalogs which are complete both in mass and volume. At
z = 0.07 our sample comprises 1649 clusters with masses
3× 1013 . M500/[h

−1 M⊙] . 1× 1015, whereas at z = 1.98
the sample includes 34 systems withM500 spanning the mass
range 3–6.5× 1013.

6.1 Mock X-ray observations

In order to predict the relative importance of AGN emis-
sion with respect to the ICM X-ray luminosity, we generate

synthetic eROSITA observations out of the clusters in the
simulation. Specifically, we apply PHOX to the catalogs of
simulated clusters, considering both the ICM and the AGN
components in the clusters. Ideal photon lists have been then
generated for (i) the ICM X-ray emission (as outlined in
Sec. 4.2) and (ii) the combined emission from ICM and AGN
within the clusters (as outlined in Sections 4.3 and 4.3.1).
For the AGN emission, we only include the modelling of the
intrinsic torus absorption according to the absorber column-
density distribution by Buchner et al. (2014), as in Eq. (8)
(i.e. we model both Compton-thick and unabsorbed AGNs
— but do not include any explicit luminosity- and redshift-
dependent obscuration fraction). By means of the SIXTE7

dedicated simulator, we subsequently convolved the PHOX
ideal photon lists with eROSITA instrumental specifications,
in order to obtain observational-like data files. The ICM-
only and AGN+ICM eROSITA-like images obtained with
SIXTE are shown in Appendix A for two example clusters in
our simulations. Since we do not include instrumental back-
ground, the number of counts received effectively does not
depend on the exposure time assumed (here we use 10 ks).
eROSITA images and relative spectra have been extracted
from the region enclosed within the projected R500 for every
cluster in the catalogs, at various redshift. This set up would
correspond to simulating eROSITA pointed observations.

In this procedure, we assume for both source types
a WABS model in XSPEC to include an artificial foreground
Galactic absorption, with the value of the column density
fixed to NH = 1020 cm−2.

6.2 AGN-to-ICM X-ray luminosity

Before inspecting the synthetic X-ray data, we investigate
directly the simulations to predict the relation between the
X-ray luminosity of the ICM and of the central AGN.

In Fig. 4, we show simulation results for redshifts be-
tween z ∼ 0.1 and z ∼ 2, considering the global theoretical
ICM luminosity (coming from the region within the virial ra-
dius) and compare it to the intrinsic [0.5–10] keV luminosity
expected from the central AGN. To this scope we consider
all AGN sources residing within the centremost region, i.e.
< 5% of the cluster virial radius. In order to estimate the
intrinsic contribution predicted by the simulations, here lu-
minosities are the theoretical values computed directly from
the simulations (as in Section 3.2), so no absorption is in-
cluded in the AGN emission. The effects of absorption and
of the observational approach will be investigated through
the mock analysis in Section 6.2.1.

We see from Fig. 4 that the distribution of the ratio

fL ≡ L
[0.5−10]
AGN (< 0.05Rvir)/LICM(< Rvir) (11)

is typically centered on values comprised between 0.1 and 1,
especially at low redshifts (z . 1). Up to z ∼ 0.6 the me-
dian of the distribution slightly increases and then oscillates
around similar values up to z ∼ 1. The mean value, instead
increases from z = 0.07 up to z ∼ 1.5. At redshifts z & 1 the
distribution becomes broader and presents a tail at values of
fL much larger than 2. At z ∼ 2, fL is typically lower than
∼ 1. Nevertheless, the sample is much smaller and we note

7 http://www.sternwarte.uni-erlangen.de/research/sixte/.
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Figure 4. Differential (histograms) and cumulative (symbols)
distribution function of the AGN-to-ICM luminosities for all the
central AGN sources (i.e. residing within 0.05Rvir) of the selected
clusters, at different redshifts between z = 0.07 and z ∼ 2. The
AGN luminosity is the intrinsic value estimated from the simu-
lation (as in Section 3.2, without considering any absorption) in
the band [0.5–10] keV (i.e. LSXR + LHXR). The ICM luminosity
is the bolometric luminosity within the virial radius.

that from the comparison between simulated and observed
LFs our sample seems to lack the population of bright AGN.
We cannot therefore derive strong constraints from these re-
sults at z ∼ 2.

These findings indicate that considering the centremost
AGN source(s) only, their intrinsic luminosity in the
SXR+HXR band is typically smaller than the luminosity
of the whole ICM within the virial region of their hosting
cluster. Nevertheless, it also indicates that some clusters do
host powerful AGN emission in their core, which can easily
reach or even exceeds by several times the global ICM X-ray
luminosity. This effect is more severe at redshifts z ∼ 1–1.2,
where up to ∼ 18%(∼ 13%) of the clusters considered show
an intrinsic value of fL & 2.

6.2.1 Mock eROSITA observations

Given the prediction from the intrinsic luminosities, it is
very important to investigate the observed AGN contamina-
tion when absorption and instrumental procedures are taken
into account. This is especially crucial for high-z clusters,
for which is more difficult to spatially resolve clusters and
AGN sources, and to disentangle the AGN emission from
that of the diffuse ICM. We inspect this case by means of
the eROSITA synthetic spectra generated. This allows us to
directly compare the counts that one would obtain from the
sole ICM emission against the combined counts from ICM
and AGN, from within the cluster R500 radius, at various
redshifts up to z ∼ 1.5–2. The AGN considered here are
therefore all the sources enclosed within R500, mimicking
the worst case were individual sources cannot be disentan-
gled spatially.

In fact, the R500 extent of the clusters in the simulated
catalogs ranges between 80–700 arcsec at z ∼ 0.1 and 30–
80 arcsec at z ∼ 1.5–2. Considering that the X-ray ICM
emission steeply decreases towards the outskirts and most
of it is associated therefore to the core region, the extent of

the X-ray diffuse emission for our clusters at high redshifts is
essentially comparable to the eROSITA HEW (i.e. 28 arcsec
in scanning mode and 15 arcsec on-axis), and distinguishing
between point sources and core ICM emission becomes very
challenging.

We investigate the expected eROSITA photon fluxes
from ICM and AGN emission in our sample, in order to
constrain the relative contribution for a 10 ks exposure. We
compare the counts from the ICM emission with those by
both AGN and ICM, extracted by construction from the
composite event file. These results for the observed SXR,
HXR and [0.5–10] keV energy bands are shown in Fig. 5,
for the simulated clusters catalogs at redshifts comprised
between z ∼ 0 and z ∼ 2.

In the l.h.s. panels we show the distribution of the ob-
served counts per second due to the sum of ICM and AGN
emission versus the count rate due to the ICM only. Differ-
ent colors refer to different redshifts, as in the legend. In the
r.h.s. panels, we report a more quantitative representation
of the ratio

fcts ≡ cts(ICM+AGN)/cts(ICM), (12)

in terms of differential (histograms; upper insets) and cu-
mulative distribution (asterisk symbols; lower insets).

From the inspection of the upper-row panels in Fig. 5,
relative to the observed SXR band, we note a trend
with redshift such that the number of sources with
cts(ICM+AGN)/cts(ICM) & 2 (i.e. where the photon flux
due to AGN is comparable to or larger than the ICM one) in-
creases from a few percents at z = 0.07, to 30% at z ∼ 0.6,
and to a maximum of ∼ 70% at z ∼ 1.5. This indicates
that in the typical redshift-range of eROSITA observations
(z ∼ 0.2–0.4) only about 10–15% of the clusters will be
dominated by AGN emission.

In the range z ∼ 1–1.2 roughly 20%(10%) of the simu-
lated clusters show a number of counts from AGN and ICM
that is at least 5(10) times higher than that from ICM only.
At high redshift, z ∼ 1.5, this effect is very severe, and we
find that, statistically, the X-ray flux coming from AGN is
10 times higher than the ICM flux for ∼ 34% of the clusters.

The vertical line in the SXR plot marks the mini-
mum detection threshold of 50 photons for a 1.6 ks ex-
posure (Pillepich et al. 2012), which corresponds approxi-
mately to the expected detection threshold for clusters in
the eROSITA all-sky survey. With this more stringent limit,
we note that only 3 sources from our simulation box would
be detected at z ∼ 1–1.2, and zero sources at z ∼ 1.5, if the
limit is applied to the ICM flux only. Nevertheless, the pho-
tons received from the source would comprise as well those
emitted by the AGN in the cluster. If we therefore apply the
same cut to the y-axis instead, i.e. to the AGN+ICM count
rate, then one would detect 77 sources at z ∼ 1–1.2 and 30
sources at z ∼ 1.5. This means that almost all of them are
actually dominated by the AGN emission.

In the central- and bottom-row panels of Fig. 5 we
report analogous results for the observed HXR and [0.5–
10] keV bands, where the distributions are shifting towards
higher values of the fcts ratio for increasing redshifts. The
main difference is shown by the HXR case, where the power-
law-like AGN emission tends to dominate over the soft, ther-
mal ICM one. By considering only clusters with at least 20
ICM counts in the SXR band, we note that for the faintest
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Figure 5. Count rates for ICM and ICM+AGN from eROSITA mock observations of the R500 region of clusters at various redshifts
between z = 0.07 and ∼ 2, marked with different colours as specified in the legend. Left: AGN+ICM count rate as a function of the ICM
count rate. Each data point represents one cluster. The vertical line in the SXR plot marks the minimum detection threshold of 50 photons
for a 1.6 ks exposure. Right: differential (upper panel) and cumulative (lower panel) distribution of the cts(ICM+AGN)/cts(ICM) ratio
(see Eq. (12)) for the clusters at each redshift. Distributions are reported only when the sample includes more than 3 sources. Colours are
the same as in the l.h.s. panels and the distributions are normalized to the total number of sources at each redshift. From top to bottom,
the three panels refer to the observed SXR, HXR and [0.5–10] keV energy bands, and only sources with a minimum of 20 photons in the
SXR (for the assumed 10 ks exposure) are considered.
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Figure 6. Same as the top-right panel in Fig. 5 (SXR), for different thresholds on the minimum ICM counts received in the SXR band:
50 (left) and 300 (right) photons, for the assumed 10 ks exposure.

sources the corresponding count rates in the observed HXR
can be one order of magnitude lower, that is few photons
(or no photons at all) are received even in the long 10 ks
exposure considered here. With our requirements for the de-
tection in the SXR band, much less stringent than that indi-
cated by Pillepich et al. (2012), the HXR count rates of the
observed sources indicate a contamination by AGN that is
always more severe than in the SXR or [0.5–10] keV bands.
Also in this band, clusters can be detected up to z ∼ 1.5,
where however ∼ 90%(70%) of the sources have a dominant
AGN flux with respect to the ICM emission, fcts & 2(5).
Interestingly, and differently from the other bands, even at
z ∼ 0.07, the photon flux due to AGN is comparable to or
larger than the ICM one (i.e. fcts & 2) already for ∼ 40% of
the clusters.

This is not the case for the distributions in the observed
SXR and [0.5–10] keV bands, where instead the distribution
is narrower at low redshifts (z < 0.6) and strongly peaked
around fcts ∼ 1–2, whereas it significantly broadens towards
higher values of fcts with increasing redshift, and almost
flattens at z ∼ 1.5.

At redshifts z ∼ 1–1.5 we therefore expect eROSITA
to encounter a significant number of sources (10–30%) for
which the detection of the cluster around the AGN is very
challenging, with the observed X-ray flux from the latter
dominating over the former by more than a factor of 10.

6.2.2 AGN-to-ICM contamination and system mass

In Fig. 6 we show the distribution of fcts for two different
lower cuts on the minimum of ICM photons received in the
observed SXR energy band, namely 50 (l.h.s. panel) and 300
(r.h.s. panel) photons for the 10 ks exposure.

As shown in the r.h.s. panel of Fig. 6, we expect to
detect clusters with M500 > 3 × 1013 h−1 M⊙ only up to
redshift z ∼ 0.62, when a detection limit of 300 photons is
applied (corresponding to the limit of 50 photons for a typi-
cal 1.6 ks exposure of the planned eROSITA all-sky survey).
At low-intermediate redshifts (z . 0.6) we still find that for
the majority of the sources the AGN emission is at most
comparable to that of the ICM alone, and no more than
20% of the sources have a dominant AGN emission.

1014 1015
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0.010

0.100

1.000

10.000
IC

M
 [

ct
s/

s]
z = 0.07
z = 0.29
z = 0.62
z = 1.04
z = 1.18
z = 1.48
z = 1.98

obs. SXR

Figure 7. ICM count rate in the SXR band as a function of
the cluster mass M500, at various redshifts between z = 0.07
and ∼ 2, marked with different colours as specified in the legend.
The horizontal lines correspond, from bottom to top, to detection
limits of 30 (solid line), 50 (dashed line), 300 (dotted line) and
500 (dot-dashed line) photons for a 10 ks exposure.

For less stringent limits on the detection limit, such as
50 counts in 10 ks (l.h.s. panel in Fig. 6), also fainter sources
can be observed in the SXR band and up to z ∼ 1.5. In this
case, a larger fraction of sources is dominated by the AGN
emission, namely up to 30–60% of the clusters would have
fcts > 2 between redshifts 1 and 1.5.

By increasing the threshold on the SXR count-rate de-
tection we essentially aim at increasing the mass limit of
the clusters that can be detected and obtain that only the
brightest sources can be detected at high redshifts. Never-
theless, we note from Fig. 7 that the received ICM count-rate
in the SXR band correlates tightly with the system mass
(here, M500) only for the massive clusters. At lower masses,
at fixed values of cts(ICM) corresponds in fact a large scat-
ter in M500, for all the redshift considered. In addition, given
the trend in redshift of the cts(ICM)-M500 relation shown
in Fig. 7, we note that the increasing threshold on the mini-
mum cts(ICM) (horizontal lines in the Figure, corresponding
to detection limits of 30, 50, 300 and 500 photons in 10 ks
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Figure 8. Same as the top-right panel in Fig. 5 (SXR energy
band), for the cluster in the sample with M500 & 1014M⊙. As in
Fig. 5, here only sources with at least 20 counts in the SXR band
(for the 10 ks exposure) are considered.

exposure, from bottom to top respectively) corresponds to
an increasing mass cut of the observed clusters only at high
redshifts. Instead, for z . 0.3, the entire mass range of the
sample M500 & 3× 1013M⊙ is still observable, even though
some sources with low mass and low count-rate cannot be
detected (for a discussion of the observational effects of this
scatter, see e.g. Allen et al. 2011).

For the purpose of comparison, we show in Fig. 8 the
distribution of fcts, in the observed SXR band, for the sub-
sample of clusters with M500 & 1014M⊙. (As in Fig. 5, we
require a minimum of 20 ICM photons in the SXR band,
for the assumed 10 ks exposure.) With respect to Fig. 6, we
see that the most massive clusters can be detected up to
redshift z ∼ 1.2, with a small contamination due to AGN
in the majority of the cases. Nevertheless, at z ∼ 1–1.2 the
fcts distribution shows a tail towards higher values, due to
the large scatter, at fixed mass, in the AGN emission with
respect to the ICM one. From this case, we infer that even
for massive clusters, 15–25% of the sources at z ∼ 1–1.2 can
be largely dominated by their AGN component in the ob-
served SXR photon flux, with an AGN count rate that is at
least 5 times larger than the ICM count rate (fcts & 5).

7 SUMMARY AND CONCLUSION

In this paper we have presented a new implementation of
the X-ray emission modelling from AGN sources within the
Magneticum Pathfinder Simulation set. We showed that the
population of AGN in the Magneticum Pathfinder Simu-
lation statistically well reproduces the observed bolomet-
ric unabsorbed and SXR/HXR absorbed LFs up to redshift
z ∼ 2, over a large range of luminosities. As an application,
we presented predictions on the eROSITA observations of
AGN and ICM X-ray fluxes for a sample of galaxy clusters,
in the range 0 . z . 2, quantifying the contamination due
to the AGN emission w.r.t. the ICM X-ray flux.

Our main findings can be summarized as follows.
Bolometric LFs from the simulated AGN catalogs have

been analysed and compared against observational data in
order to evaluate the reliability of the intrinsic simulated

population of SMBHs (Fig. 1) (see also Hirschmann et al.
2014). The theoretical estimation of their bolometric lumi-
nosity and the therefrom derived unabsorbed SXR and HXR
luminosity (under the assumtion of the bolometric correc-
tions by Marconi et al. (2004)) were then used to constrain
in a self-consistent way the spectral parameters of the X-
ray emission associated to each AGN source. In the mod-
elling of the X-ray emission from each source, we further
statistically associate to each AGN source a value for the
column density of the obscuring material expected to re-
side in the torus surrounding the AGN, by assuming an
observationally-motivated distribution of the obscurer col-
umn densities (from Buchner et al. 2014). This modelling is
embedded into our PHOX photon simulator in order to de-
rive the X-ray synthetic emission from the AGN component
in the simulations (Section 4.3 and 4.3.1). The assumption of
an obscuration component at the sources allowed us to test
the obscured LFs in both the soft and hard X-ray energy
bands (Section 5), which show a remarkable level of agree-
ment with observational LFs for the high-luminosity tail in
all the redshift bins analysed between z = 0.1 and z = 1.2.
The simulated LFs still overpredict the observational ones at
low luminosities, in both energy bands. Nevertheless, when
an additional luminosity- and redshift-dependent obscura-
tion fraction is considered, e.g. following Hasinger (2008), we
find that the comparison between our results and observed
LFs remarkably improves. In both energy bands, the sim-
ulated LFs decrease at low luminosities and reproduce the
observed LFs by Hasinger et al. (2005) and Aird et al. (2010)
at almost all redshifts (see Fig. 3). However, we still note a
discrepancy in the bright end of the SXR LFs at z = 2.3.

The importance of producing realistic X-ray catalogs
of simulated AGN in order to compare the intrinsic pop-
ulation of simulated SMBHs with the statistical proper-
ties of observed AGN is also discussed in a recent study
by Koulouridis et al. (2017) on the cosmo-OWLS simula-
tions. They also include a modelling of the obscuration frac-
tion which depends on redshift and luminosity of the AGN,
showing that the AGN in the cosmo-OWLS simulations re-
produce very well the observational data. In addition to LFs,
Koulouridis et al. (2017) focus on the correlation function
of AGN in the mock XMM-Newton X-ray catalogs and on
the comparison to observed Eddington ratio distribution,
finding as well a good match with observations. Differently
from their work, here we include self-consistently the mod-
elling of the AGN X-ray emission depending on the intrinsic
luminosity predicted by the simulations, and assuming an
observationally-based torus obscuration component for ev-
ery AGN source (including both Compton-thick and unob-
scured objects) in the simulation.

The use of mock X-ray observations is particularly im-
portant to study the combined emission of AGN and ICM
in clusters. We dedicate the second part of this analysis to
explicitly studying the mock X-ray emission of AGN in sim-
ulated clusters (Section 6). This provides a prediction for
the effects due to the presence of AGN on the detection of
clusters, as expected from eROSITA-like observations. Dif-
ferently from the study of the absorbed LFs, where we do not
include any instrumental response in order to purely test our
modelling of the AGN emission including the torus obscura-
tion component, we generate complete eROSITA-like mock
observations with PHOX in order to investigate the observed

c© ... RAS, MNRAS 000, 1–16



14 V. Biffi, K. Dolag & A. Merloni

AGN emission in galaxy clusters. Specifically, we employ
the PHOX X-ray simulator to generate eROSITA synthetic
observations for a sample of galaxy clusters with masses
M500 > 3 × 1013 h−1 M⊙, extracted from the Magenticum
Pathfinder Simulation at various redshifts between z = 0
and z = 2. This allows us to explore and predict the expected
contamination from AGN emission to the ICM X-ray lumi-
nosity of the hosting cluster, which will be very important
in future X-ray survey, especially of the high-redshift Uni-
verse, like eROSITA (Section 6.2). At low redshift (z . 0.3),
we find that only for a small fraction of clusters (∼ 5–10%)
the observed X-ray flux from the AGN within the projected
R500 radius is comparable to or larger than the flux emit-
ted by the whole ICM. As expected, however, this fraction
increases for increasing redshifts. At redshifts z ∼ 1–1.5,
the majority of our clusters are faint and present a dom-
inant AGN component in the X-ray emission. Specifically,
the flux observed from AGN and ICM is more than a factor
of 5 with respect to the flux from the ICM alone for 20–
45% of the sources. If the observed SXR band is considered,
∼ 34% of our clusters show that the AGN+ICM flux is at
least 10 times higher than the flux of the ICM. This result is
consistent with the intrinsic prediction from the simulated
catalogs, where the central AGN source(s) alone (residing
within 5% of the cluster virial radius) can emit an X-ray lu-
minosity that is up 10 times higher than the LX of the whole
ICM (see Fig. 4). When only the subsample of massive clus-
ters (M500 > 1014 h−1 M⊙) is considered, we find that the
vast majority of them is not dominated by the AGN emis-
sion, except for 15–25% of the sources at z ∼ 1–1.2.

The particular assumptions made in this analysis, for
instance on the observed distribution of column densities
of the torus obscurer component or on the luminosity- and
redshift-dependent obscuration fraction, can also moder-
ately impact our conclusions. We note, nevertheless, that
updates to account for recent observational improvements
can be easily implemented into the PHOX simulator, in fu-
ture works.

Next-generation of wide-area X-ray surveys, especially
those dedicated to exploring the high-z Universe like
eROSITA, will necessarily have to deal with the ambigu-
ity of detecting the diffuse emission from galaxy clusters
around powerful AGN sources, which might dominate the
X-ray observed flux. As we showed here, simulations allow
to predict the statistical occurrence of these cases. Multi-
wavelenght observations can also play an important role
in detecting the presence of massive clusters around X-ray
AGN sources, as discussed by Green et al. (2017). Vicev-
ersa, spectroscopic followup of large number of X-ray sources
detected by eROSITA (such as those planned by SDSS-V,
Kollmeier et al. 2017, or 4MOST, de Jong et al. 2014) will
allow AGN to be identified with high reliability. This will be
crucial to investigate the role of AGN and associated feed-
back within BCGs and clusters up to high redshifts, where
these phenomena are strictly connected to the thermody-
namical and chemical evolution of the cluster itself.

APPENDIX A: MOCK EROSITA IMAGES

As an example, in Fig. A1 we report the synthetic 10 ks
eROSITA image of two example clusters in the sample, one
at z = 1 and one at z = 0.62. In particular, we show the im-

ages obtained from the combined emission of ICM and AGN
sources in each cluster (left-hand-side insets in each figure)
and those for the ICM only (right-hand-side insets). These
are two examples of detected clusters, where the AGN emis-
sion is not dominant over the ICM. In the bottom-row panels
we show the zoom onto the central region of the pointing.

The images were obtained performing pointed observa-
tions with the standard SIXTE setup, for which the PSF
is rapidly degrading (increasing) towards higher off-axis an-
gles (see, e.g. Merloni et al. 2012), as noticeable at the edges
of the pointings in the upper panels of Fig. A1. In reality,
however, observations like those investigated here will be
rather performed in survey (scanning) mode, which will re-
sults in an effective average PSF Half-Energy Widthof 28”
in the soft band and ∼ 40” in the hard band. In the current
analysis these features of the PSF do not play any major
role, since we perform a pointed observation for every single
cluster, which typically resides in the very central region of
the FoV (see the zooms in Fig. A1).
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