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ABSTRACT
The abundance of galaxy clusters as a function of mass and redshift is a well known
powerful cosmological probe, which relies on underlying modelling assumptions on
the mass-observable relations (MOR). MOR parameters have to be simultaneously fit
together with the parameters describing the cosmological model. Some of the MOR
parameters can be constrained directly from multi-wavelength observations, as the
normalization at some reference cosmology, the mass-slope, the redshift evolution and
the intrinsic scatter. However, the cosmology dependence of MORs cannot be tested
with multi-wavelength observations alone. We use Magneticum simulations to explore
the cosmology dependence of galaxy cluster scaling relations. We run fifteen differ-
ent hydro-dynamical cosmological simulations varying Ωm , Ωb , h0 and σ8 (around
a reference cosmological model). The MORs considered in this work are gas mass,
gas temperature, YX and velocity dispersion as a function of the spherical overdensity
virial mass. We verify that the mass and redshift slopes and the intrinsic scatter of
the MORs are nearly independent of cosmology with variations significantly smaller
than current observational uncertainties. We show that the gas mass sensitively de-
pends only on the baryon fraction, velocity dispersion and gas temperature sensitively
depend on the hubble constant, and YX depends on both baryon fraction and the
hubble constant. We investigate the cosmological implications of our MOR parame-
terization on a mock catalog created for an idealized eROSITA-like experiment. We
show that our parametrization introduces a strong degeneracy between the cosmolog-
ical parameters and the normalization of the MOR, degeneracy that can be broken by
combining multiple observables and hence improve the cosmological parameter con-
straints. Finally, the parameter constraints derived at different overdensity (∆500c),
for X-ray bolometric gas luminosity and stellar mass, and for different subgrid physics
prescriptions are shown in the appendix.
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1 Introduction

Galaxy clusters are the most massive gravitationally bound
structures in the Universe and represent a well known pow-
erful cosmological tool. Their abundance as a function of
redshift and mass is sensitive to both the expansion history
and the history of structure formation in the Universe (see
Allen, Evrard & Mantz 2011 for a review), providing there-
fore complementary information to purely geometric probes

? priyanka.singh@inaf.it

such as Type Ia supernovae, the primary cosmic microwave
background (CMB) and baryonic acoustic oscillations.

Integrated observable properties of galaxy clusters like
X-ray luminosity and temperature, the optical richness and
their associated velocity dispersion, and the intensity of the
Sunyaev-Zeldovich effect (SZE: Sunyaev & Zel’dovich 1972),
are generally used as a proxy for the total cluster mass,
as they are expected to regularly scale with galaxy cluster
mass following mass-observable scaling relations (MOR), al-
though with some associated intrinsic scatter. Current stud-
ies of the cluster mass function (often described as cluster
number-counts experiments) are therefore simultaneously
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exploring both cosmological and MOR (including the in-
trinsic scatter) parameters to constrain cosmological models
(e.g., Planck Collaboration et al. 2016; Mantz et al. 2015;
Bocquet et al. 2019). The standard approach for these state-
of-the-art studies is to calibrate the MOR empirically, by
anchoring the associated parameters through either weak-
lensing (e.g. Bardeau et al. 2007; Okabe et al. 2010; Hoek-
stra et al. 2012; Marrone et al. 2012; Applegate et al. 2014;
Umetsu et al. 2014; Gruen et al. 2014; Hoekstra et al. 2015;
Okabe & Smith 2016; Battaglia et al. 2016; Applegate et al.
2016; Hilton et al. 2018), or through dynamical studies (e.g.
Sifón et al. 2013; Hasselfield et al. 2013; Bocquet et al. 2015;
Capasso et al. 2019a,b,c), methods which are more directly
linked to effect of gravity alone, and thus easy to charac-
terize in terms of systematics associated with the treatment
of the complex physics regulating the baryonic component.
Therefore, for this reason, biases associated with weak lens-
ing and dynamical estimates can be calibrated more robustly
with numerical simulations. As a result, MOR parameters
including the normalization, the mass slope, the redshift
evolution, and the scatter, can be directly constrained from
multi-wavelength observations (Mantz et al. 2015; Dietrich
et al. 2019; Bocquet et al. 2019). In most of these studies,
the cosmological dependence of MORs is usually assumed to
be only related to the background evolution of the Universe,
with the notable exception of measurements of the baryon
fraction in galaxy cluster to constraint the matter density
(e.g., Mantz et al. 2014).

Within this framework, numerical and hydro-dynamical
cosmological simulations still provide fundamental informa-
tion:

(i) they provide accurate calibration of the theoretical
halo mass function (e.g., Tinker et al. 2008; Cui, Borgani
& Murante 2014; Velliscig et al. 2014; Bocquet et al. 2015;
Despali et al. 2016; McClintock et al. 2019, and references
therein);

(ii) they provide accurate calibration of possible biases
affecting the observables used to anchor the absolute scale of
the MOR, as weak-lensing and dynamical mass calibration
(e.g., White, Cohn & Smit 2010; Saro et al. 2013; Becker &
Kravtsov 2011; Rasia et al. 2012, and references therein);

(iii) they provide guidance on the functional form for the
mean relation and associated intrinsic scatter of the MOR,
as well as priors on parameters that observationally are on
weakly constraint (Stanek et al. 2009; Truong et al. 2018;
Gupta et al. 2016).

In particular, as we have access to only one observable Uni-
verse, these simulations represent the only way to test if the
MORs are cosmology dependent and, if they are, to calibrate
the parameters describing this dependence.

In this paper, we explore the cosmology dependence of
galaxy cluster scaling relations using cluster catalogs iden-
tified in the suite of Magneticum simulations†. These large
cosmological simulations are designed to investigate differ-
ent cosmological scales with very large number of particles
and, at the same time, to describe the hydro-dynamical evo-
lution of the baryonic collisional component. They therefore
provide a complementary tool with respect to purely N-
body simulations such as Quijote simulations (Villaescusa-

† www.magneticum.org

Navarro et al. 2019), the Mira-Titan Universe (Heitmann
et al. 2016; Lawrence et al. 2017) and Aemulus simulations
(DeRose et al. 2019). Furthermore, due to the large sim-
ulated cosmological volumes, they are better designed to
study the cluster population with respect to other higher-
resolution, but smaller volumes simulations such as, e.g., the
BAHAMAS simulations (McCarthy et al. 2018; Stafford et al.
2019). Moreover, the purpose of Magneticum simulations is
to provide a theoretical counterpart for Large Scale Struc-
ture (LSS), therefore the dynamical range of the cosmolog-
ical parameters space explored is significantly broader than
the current CMB cosmological constraints (Planck Collab-
oration et al. 2017), currently tested in other studies (e.g.
Aemulus, BAHAMAS simulations).

In this work, we run Magneticum simulation for fifteen
different cosmological volumes, each one generated with the
same initial seeds, but with different cosmological parame-
ters. All the simulations include the description of the same
physical processes and use the same sub-grid model parame-
ters. Our basic assumption is that the variation of the cosmo-
logical model should not directly affect the microscopic pro-
cesses that these sub-grid parameters describe and therefore,
these sub-grid physics parameters have been tuned to repro-
duce observed properties of galaxy clusters at an arbitrarily
(but reasonable, and consistent with observations) chosen
reference cosmology (Bocquet et al. 2016; Gupta et al. 2016;
Dolag, Mevius & Remus 2017; Remus, Dolag & Hoffmann
2017; Biffi, Dolag & Merloni 2018; Ragagnin et al. 2019).
In other words, their numerical value does not carry any
physical meaning. As a result, the results presented in this
work could be considered robust only if they are indepen-
dent of the (arbitrary) choice of the reference cosmology
used to tune the sub-grid model parameters. Instead of re-
tuning them for each different cosmological model (an effort
which would require an unfeasible computational cost), we
address the robustness of our results by studying the va-
lidity of our model assumption in the adopted functional
form of the MORs. In particular, we explicitly verify that
the cosmological dependence of the MORs is only affecting
the normalization of the studied scaling relations, but does
not change the mass slope, the redshift evolution, and the
intrinsic scatter. Therefore, we argue that re-tuning the sub-
grid model parameters for different choices of the reference
cosmology would not impact the cosmological dependence of
the MOR, as it will only translate into a different zero-point
normalization.

In summary, the aim of this paper is: i) to construct a
universal scaling relation where the cosmology dependence
of the scaling relation is absorbed in its amplitude, ii) to test
the robustness of our parameterization with respect to the
observational uncertainties, and iii) to forecast the impact
our cosmology dependent parameterization on an idealized
cluster cosmology experiment. This paper is organized as
follows: in Section 2 we briefly describe the details of the
simulation setup. In Section 3, we describe the basic ingre-
dients of the MOR and test its robustness. In Section 4, we
present the results of our analysis for Mgas, Tgas, YX and σv.
In Section 5, we discuss the impact of our MOR parametriza-
tion for an idealized cosmology experiment. In Section 6, we
present the summary of the main analysis.
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Cosmological dependence in MOR 3

Table 1. Cosmological parameter values for the fifteen simulation boxes.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Ωm 0.153 0.189 0.200 0.204 0.222 0.232 0.268 0.272 0.301 0.304 0.342 0.363 0.400 0.406 0.428

Ωb 0.0408 0.0455 0.0415 0.0437 0.0421 0.413 0.0449 0.0456 0.0460 0.0504 0.0462 0.0490 0.0485 0.0466 0.0492

σ8 0.614 0.697 0.850 0.739 0.793 0.687 0.721 0.809 0.824 0.886 0.834 0.884 0.650 0.867 0.830

h0 0.666 0.703 0.730 0.689 0.676 0.670 0.699 0.704 0.707 0.740 0.708 0.729 0.675 0.712 0.732

fb 0.267 0.241 0.208 0.214 0.190 0.178 0.168 0.168 0.153 0.166 0.135 0.135 0.121 0.115 0.115

2 Simulation details

Magneticum simulations are based on the Smoothed Parti-
cle Hydrodynamics (SPH) code P-GADGET3 which itself is
an improved version of P-GADGET2 (Springel 2005; Springel
et al. 2005). The simulation includes a variety of physical
processes such as metallicity dependent radiative cooling
(Wiersma, Schaye & Smith 2009), UV background heating
(Haardt & Madau 2001), a detailed model of star formation,
chemical enrichment (Tornatore et al. 2007) and supernovae
(SNe) as well as active galactic nuclei (AGN) driven feed-
back prescriptions (Springel & Hernquist 2003; Di Matteo
et al. 2008; Fabian 2010; Hirschmann et al. 2014; Bocquet
et al. 2016).

For the purpose of our study, we use Box1a from
Magneticum simulation set, which is a large size, medium
resolution box. The size of the box is ∼ 896 h−1

0 Mpc. It con-
tains 15263 dark matter particles and an equal number of
gas particles. For our reference cosmology, this corresponds
to a characteristic mass resolution of dark matter, gas and
star particles of 1.3 × 1010 h−1

0 M�, 2.6 × 109 h−1
0 M� and

6.5 × 108 h−1
0 M�, respectively. The gravitational softening

lengths for dark matter, gas and star particles are 10h−1
0 kpc,

10h−1
0 kpc and 5h−1

0 kpc, respectively.
We run the same simulation set-up for a sample of fif-

teen different flat ΛCDM cosmological models (C1, C2,...,
C15). The cosmological parameters varied in each simula-
tions are Ωm, σ8, h0, and Ωb and their values are specified
in Table 1 and shown in Figure 1 as coloured points, to-
gether with cosmological constraints obtained by state-of-
the-art cluster number counts experiment (Bocquet et al.
2019, with an additional Gaussian prior on h0 with mean
0.704 and width 0.014) . The parameter ranges used are thus
0.15 < Ωm < 0.45, 0.6 < σ8 < 0.9, and 0.65 < h0 < 0.75,
to cover the entire dynamic range of current large-scale-
structure cosmological constraints. The cosmological param-
eters are chosen from above ranges using Latin hypercube
sampling‡. The cosmologies are labelled as C1, C2,...., C15
in order of increasing value of Ωm. Note that, thirteen out of
fifteen cosmologies have fixed Ωbh

−2
0 ∼ 0.092, perpendicular

to the direction of degeneracy between Ωb and h0. The cos-
mologies C3 and C13 have been added to break the degen-
eracy between the two. Our reference cosmology (C8) cor-
responds to WMAP7 best fit results (Komatsu et al. 2011).

Friends-of-friends (FoF) algorithm is used to identify

‡ https://pythonhosted.org/pyDOE/randomized.html

haloes, linking only the dark matter particles with a linking
length b = 0.16. A SUBFIND algorithm (Springel et al. 2001;
Dolag et al. 2009) is used to compute spherical overdensity
(SO) virial mass (Mvir, Bryan & Norman 1998), where, ∆vir

is a function of Ci. The halo is centred at the position of the
dark matter particle in a FoF group having the minimum
value of the gravitational potential. The observable quanti-
ties are integrated within the virial radius for each of the
identified halo. Specifically, we study the gas mass (Mgas ),
the gas temperature (Tgas), the X-ray pseudo-pressure YX
(≡ Mgas × Tgas ), where Mgas is the sum of mass of all
gas particles within a given overdensity radius, and Tgas is
the associated gas mass weighted temperature. Furthermore
we also investigate the mass-σv relation, where the veloc-
ity dispersion σv is the mass weighted velocity dispersion
of all the particles belonging to each main halo. Results for
X-ray bolometric gas luminosity and stellar mass are given
in Appendix A.1 and A.2, respectively. Results for M500c

(∆500c = 500 w.r.t. ρc) are given in Appendix B.
We note that all the above mentioned observables are

representing simplified and idealized versions of the actual
physical observed quantities. A large effort has been dedi-
cated over the last decades (Nagai, Kravtsov & Vikhlinin
2007; Lau, Kravtsov & Nagai 2009; Lau, Nagai & Kravtsov
2010; Nagai & Lau 2011; Lau, Nagai & Nelson 2013; Mu-
nari et al. 2013; Suto et al. 2013; Zhuravleva et al. 2013;
Avestruz et al. 2014; Nelson, Lau & Nagai 2014; Rasia et al.
2014; Shi et al. 2015; Biffi et al. 2016; Shi et al. 2016; Walker
et al. 2019) to understand how the physical properties of
haloes translates into observables (and vice-versa) through
the analysis of dedicated mocks. This project is however fo-
cused only on the cosmological dependence of the MORs,
which we thus assume to be unrelated to the biases and
scatter associated to such observational effects.

We then apply conservative mass cuts and select only
haloes with Mvir > 2× 1014M� (corresponding to approxi-
mately 104 particles), to ensure that haloes extracted from
the hydro simulations are not affected by issues related to
resolution and numerical artifacts. We extract cluster cata-
logues at six redshifts. The final number of haloes used in
each simulation and redshift is shown in Table 2.

3 Method

For a given observable O, our aim is to construct a univer-
sal scaling relation, described by a set of parameters which
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are therefore assumed to be all mass, redshift and cosmol-
ogy independent. We adopt the following functional form to
describe the MOR:

lnO = Πc + (α+ αss) ln
( M
MP

)
+ βss ln

( F (z)

F (zP )

)
+β ln

( 1 + z

1 + zP

)
± σ, (1)

where F (z) ≡ E(z)
√

∆vir(z), σ is the intrinsic log-normal
scatter, αss and βss (see Table 3) represent the self-similar
mass and redshift dependence of the MOR (Böhringer,
Dolag & Chon 2012), and MP = 2.85 × 1014M� and
zP = 0.14 are the pivot mass and redshift (the median mass
and redshift of the sample). The parameters α and β capture
any deviations from the predicted self-similar mass depen-
dence and evolution, and are therefore both zero in a per-
fectly self-similar scenario. The term Πc is the normalization
of the MOR containing its cosmological dependencies. We
assume a simple power law dependence of normalization on
cosmological parameters.

Πc = Πc,0 + γh0 ln
( h0

hP0

)
+ γb ln

( fb
fPb

)
+ γσ8 ln

( σ8

σP8

)
(2)

where fb = Ωb/Ωm is the cosmic baryon fraction, and hP0 =
0.704, fPb = 0.168 and σP8 = 0.809 are the pivot points in
cosmological parameters equal to our C8 cosmology.

The adopted MOR functional form (Equation 1 and 2)
consists therefore in two distinct families of parameters:

• Astrophysical parameters: Πc,0, α, β and σ. These are
the parameters that can be observationally constrained us-
ing multi-wavelength data.
• Cosmological parameters γs: γh0 , γb and γσ8 . These are

the parameters that cannot be constrained with observa-
tions.

The primary purpose of this work is to provide the best esti-
mates and most reliable uncertainties associated to the pa-
rameters describing the cosmology dependence of the MOR
γs.

3.1 Robustness of the model

The main assumption that goes into constructing Equation
1 and 2 is that α, β and σ are cosmology independent, or,
in other words, that cosmology is only affecting the normal-
ization of the MOR. To test that our assumption is indeed
justified, we fit the MOR (after applying a 3σ clipping to
remove outliers) separately on each individual cosmological
simulation. More in detail, for each Ci simulation we use a
Gaussian likelihood and flat uniform priors and fit only for
Πc,0, α, β and σ using Equation 1 to see whether α, β and
σ depend on Ci. The parameter space is explored with the
emcee affine-invariant sampler (Foreman-Mackey et al. 2013)
to find the best-fitting values and associated uncertainties.

Coloured points in Figure 2 show the variation of α, β
and σ for the 15 different simulated cosmologies. The over-
all resulting range is highlighted by the darker grey bands.
While residual trends and variations in these parameters are
clearly visible (e.g., decreasing α for Mgas from C1 to C15),

we note that these differences are much smaller than cur-
rent state-of-the-art observational constraints (lighter grey
bands enclosed by dashed lines in Figure 2) for the three
X-ray observables Bulbul et al. (2019) (hereafter, B19) and
by previous studies on simulations for the σv-M relation
(Evrard et al. 2008). This result therefore justifies our as-
sumption about the cosmology independence of α, β and σ
in Equation 1. In other words, any cosmology dependence in-
troduced in these parameters due to the presence of baryons
is only of second order.

In order to estimate how the residual lack of universality
on the astrophysical parameters propagates into systematic
variations on the cosmological parameters γs, we then pro-
ceed as follows.

Instead of jointly fitting the astrophysical and cosmo-
logical parameters together for all the 15 Ci cosmologies,
we fit only for the cosmological parameters γs while keeping
the astrophysical parameters fixed (except σ). We repeat
the procedure 15 times, each time with the astrophysical
parameters fixed to their best fitting values of each individ-
ual Ci cosmology. For example, we fix the values of Πc,0,
α and β to their best-fitting values for C1 and then run
MCMC analysis to find best-fitting values of γs. This anal-
ysis is repeated for all fifteen cosmologies, and therefore it
gives us a set of fifteen best-fitting values of γh0 , γb and γσ8 .
The range of these cosmological parameters γs exceeds the
pure statistical uncertainty of the fit, which is driven by the
overall extremely large number of objects in our simulations
and therefore does not reflect the underlying limitations of
our modelling. The resulting range for both the astrophysi-
cal and cosmological MOR parameters are shown in Table 4
and 5, respectively. The mean values quoted in these tables
are simply the mean of the systematic uncertainty range.

4 Results

We present here our results for each of the four studied
MORs. Note that, the observational results are generally
at a different overdensity. Thus, the comparison of our re-
sults with the observations in this and the following sections
is for qualitative purpose only.

4.1 Mgas -Mvir scaling relation

For the Mgas -Mvir scaling relation we obtain α and β con-
sistent with zero, i.e. no deviations from self-similarity. The
log-normal scatter is also found remarkably small (. 4%).
The derived self-similar redshift evolution and small intrinsic
scatter are in agreement with observational constraints from
B19. B19 find a steeper mass dependence (α ∼ 0.26), while
other observational results suggest a mass-slope consistent
with self-similarity (e.g., Mantz et al. 2016). These observa-
tions are performed at ∆500c. While here we extend to virial
radius where the baryon fraction of massive systems, such
as those considered here, is approximately the cosmological
baryon fraction. Thus the gas fraction (Mgas/Mvir) is ap-
proximately constant and independent on the cluster mass
i.e. α = 0.

Among the cosmological parameters γs, we find that
the Mgas -Mvir scaling relation is consistent with being in-
dependent of h0, and independent of σ8 within ∼ 2σ. We
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Table 2. The final number of haloes used in our analysis at different snapshots in different cosmological boxes above the lower mass

limit Mvir > 2× 1014M� (corresponding to approximately 104 particles).

z C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

0 487 1698 4639 2945 5063 2998 4864 7823 10454 12293 14103 17817 8711 21879 20912

0.14 350 1335 3847 2299 4065 2262 3677 6150 8386 10093 11340 14570 6003 17818 16701

0.29 219 910 2976 1641 3033 1465 2547 4601 6116 7729 8413 11172 3644 13550 12258

0.47 121 516 2050 1034 2015 857 1460 3059 4102 5290 5607 7742 1861 9369 8087

0.67 59 254 1271 553 1144 396 711 1694 2351 3297 3244 4744 754 5577 4576

0.90 15 103 645 218 559 141 272 790 1091 1673 1558 2436 240 2872 2185

Figure 1. Distribution of cosmological parameters for the fifteen cosmologies used in this paper. WMAP7 (i.e. our C8) is highlighted

by star symbols. The black contours represent 68%, 95% and 99% confidence limits on these parameters (Bocquet et al. 2019) with

additional Gaussian priors applied on h0.
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Figure 2. Variation in best-fitting values of α, β and σ as a function of cosmology. Filled circles correspond to the cosmologies shown

in Figure 1 with the same color scheme. The lighter grey bands enclosed by dashed lines represent current state-of-the-art observational

uncertainties on the three X-ray observables Bulbul et al. (2019), while the uncertainty on σv-M relation is the result of previous
simulation studies (Evrard et al. 2008). Empty squares correspond to non-radiative runs (performed for C1 and C15) whereas empty

circles correspond to the simulation run with a different feedback scheme for C8 cosmology. Darker grey bands represent the systematic

uncertainty range quoted in Table 4.

Table 3. Self-similar mass (αss) and redshift (βss) dependence

of the MORs.

Mgas Tgas YX σv

αss 1 2/3 5/3 1/3

βss 0 2/3 2/3 1/3

Table 4. Mean values and systematic uncertainties for astro-

physical MOR parameters (described in detail in Section 3.1).
The mean values quoted here are the mean of the systematic un-

certainty range with symmetric error-bars.

Mgas Tgas YX σv

Π 31.4±0.4 0.5±0.2 31.9±0.2 6.4±0.1

α 0.02±0.02 0.0±0.02 0.03±0.04 0.01±0.07

β 0.01±0.02 -0.16±0.03 -0.15±0.04 0.03±0.04

σ < 0.04 0.11±0.02 0.13±0.02 0.05±0.01

find Mgas ∝ f0.8
b , which is slightly shallower but significantly

away from the dependence expected from a closed box sce-
nario (i.e. Mgas ∝ fb).

In the upper and lower panel of Figure 3 we show re-

Table 5. Same as Table 4 for cosmological MOR parameters.

Mgas Tgas YX σv

γh0
-0.13±0.22 0.78±0.05 0.65±0.20 0.38±0.04

γb 0.80±0.03 -0.02±0.01 0.78±0.03 -0.05±0.01

γσ8 -0.14±0.06 0.14±0.04 0.01±0.05 -0.01±0.01

spectively the original Mgas and the predicted M ′gas (the
rescaled Mgas at the pivot redshift and C8 pivot cosmology
i.e. Mgas - redshift dependence - cosmology dependence) as
a function of Mvir for all the clusters in our sample of all the
15 analyzed cosmologies. The solid and dashed grey lines in
the lower panel correspond to the best-fit and 3σ regions
at the C8 cosmology. We note that the applied rescaling ef-
fectively removes the cosmological dependence of the Mgas

-Mvir scaling relation.

4.2 Tgas -Mvir scaling relation

For the Tgas -Mvir relation, we find a good agreement with
the self-similar expectation in the mass slope (e.g., α ∼
0), consistent with many observational studies (Vikhlinin
et al. 2009; Arnaud, Pointecouteau & Pratt 2005; Mantz
et al. 2016). However note that, B19 find a steeper mass
slope compared to the self-similar prediction. We find a
small negative redshift evolution (β ∼ −0.16) consistent
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Cosmological dependence in MOR 7

Figure 3. Top panel: Gas mass as a function of halo mass. The
color scheme is same as in Figure 1. Bottom panel: Same as top

panel after rescaling all data points to C8 cosmology and absorb-

ing the predicted redshift evolution. The solid and dashed grey
lines in the lower panel corresponds to the best-fit and 3σ regions

at the C8 cosmology.

within 1-σ with observed redshift evolution (eg. Mantz et al.
2016, B19). We find a log-normal scatter of 11%, consistent
(within 2-σ) with the observed scatter in Tgas -M500c rela-
tion (Bulbul et al. 2019).

For the cosmology dependence of the scaling relation,
we find Tgas ∝ h0.78

0 f−0.02
b σ0.14

8 . Therefore, the temperature-
mass scaling relation is almost independent of the baryon
fraction and σ8. However, the temperature has a significant
dependence on h0, consistent with the theoretical expecta-
tion of 2/3 if Tgas ∝ ρ1/3

c (and ρc ∝ h2
0).

4.3 YX -Mvir scaling relation

The X-ray integrated pseudo-pressure YX is an observable
which is characterized by a relatively low intrinsic scatter
and its closely connected to the SZE observable (Kravtsov,
Vikhlinin & Nagai 2006; Nagai 2006; Nagai, Kravtsov &
Vikhlinin 2007; Bonamente et al. 2008; Vikhlinin et al. 2009;
Anderson & Bregman 2011; Benson et al. 2013; Mantz et al.
2015; B19). The self-similar scenario predicts YX ∝ M

5/3
vir

F (z)2/3. We find α ∼ 0, consistent with the observations by
Vikhlinin et al. (2009); Lovisari, Reiprich & Schellenberger
(2015); Mantz et al. (2016), whereas it is shallower than the
observations by Arnaud, Pointecouteau & Pratt (2007) and
B19. We find β ∼ −0.15, i.e. a small deviation from self-
similarity in the redshift dependence as expected from the
results for Tgas -Mvir relation. Observed redshift evolution
of YX -mass relation is consistent with zero given the large
uncertainties (eg. Mantz et al. 2016; B19). The scatter in
YX -Mvir relation is around 13%, driven by the scatter in
Tgas -Mvir relation, and consistent with the observed scatter
in YX -M500c relation (Bulbul et al. 2019).

In case of cosmology dependence we find, YX ∝ f0.78
b ,

driven by the strong baryon fraction dependence of gas mass,
YX ∝ h0.65

0 , driven by its temperature dependence and no
dependence on σ8.

4.4 σv -Mvir scaling relation

For perfectly virialized objects, velocity dispersion is tracing
the total halo mass, since it is shaped by gravity only. Pre-
vious simulations studies (eg. Evrard et al. 2008; Saro et al.
2013; Munari et al. 2013) have already shown that three-
dimensional σv -Mvir relation stays close to the self-similar
prediction. We also find α and β ∼ 0. Consistent with previ-
ous results, we find a remarkably small scatter in the scaling
relation (∼ 5%). Previous studies have shown, however, that
the one-dimensional velocity dispersion-mass relation has a
significantly larger scatter, due to halo triaxiality (White,
Cohn & Smit 2010; Saro et al. 2013).

Coming to the cosmology dependence, we find σv ∝
h0.38

0 and to be independent of baryon fraction and σ8, again
in agreement with a self-similar scenario (since σ2

v ∝ ρ
1/3
c ).

5 Implication for cosmological studies

In this section, we forecast the impact of the results pre-
sented in the previous section for the parameterization of the
MOR on an idealized cluster number-counts cosmology ex-
periment. The simulated experiment resembles a simplified
eROSITA cluster cosmology analysis, with an idealized gas-
mass selected cluster catalog over 15,000 deg2. This analy-
sis does not capture all the sophisticated modelling of the
eROSITA selection function (e.g., Grandis et al. 2018), but
has solely the purpose of highlighting the impact of differ-
ent cosmological parametrization of the MOR for cluster-
cosmology experiments.

The mock catalog is generated using the Tinker et al.
(2008) halo-mass function assuming a WMAP7 cosmology
(Komatsu et al. 2011). Gas-masses are then computed from
the total cluster mass (including intrinsic scatter) using
equations 1, and 2 and Tables 4, and 5. The final catalog
consists in all clusters with final log(Mgas/M�) > 13.75 (cor-
responding to a halo mass ∼ 2× 1014M�) between redshift
range 0.1-1.

We then analyze the above sample, by computing the
likelihood of observing the number of clustersNi,j in the sur-
vey area for a given redshift bin i and Mgas bin j L(Ni,j |~θ),
where ~θ contains both the MOR and the cosmological pa-
rameters. We assume the likelihood to be Gaussian and we
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Table 6. Priors used in our analysis while forecasting the impact of our MOR parameterization on an idealized eROSITA-like experiment

(see Section 5 for details). U(a, b) represents uniform flat prior in the range (a, b). N (µ, σ) represents Gaussian prior with mean µ and

width σ. The priors on Ωm, h0, Ωbh
2
0 and lnAs are same for all three cases (therefore not shown in table) are given in Section 5.

Πc α β σ γh0
γb γσ8

case-(i) N (31.40, 0.157) N (1.02, 0.13) N (0.01, 0.192) N (0.10, 0.05) - - -

case-(ii) ” ” ” ” N (−0.13, 0.22) N (0.80, 0.03) N (−0.14, 0.06)

case-(iii) N (31.40− ln(10∆(Ωm), 0.157) ” ” ” ” ” ”

account in the covariance matrix for the Poisson and sample
variance noise.

The parameter space ~θ is explored with affine invariant
sampler emcee (Foreman-Mackey et al. 2013). We refer the
reader to Costanzi et al. (2019) for further details on the
likelihood and covariance matrix calculation.

More in detail, the parameters varied during the MCMC
analysis are Πc,0, α, β, σ and the cosmological parameters
(within a flat ΛCDM model) Ωm, h0, Ωbh

2 and lnAs. We
apply Gaussian priors on h0 (0.7 ± 0.05), Ωbh

2 (0.02208 ±
0.00052), and uniform priors on Ωm (0.05, 0.5), and lnAs
(1.0, 6.0). We also apply Gaussian priors on α (1.02±0.130)
and β (0.01±0.192), where the mean values of the Gaussian
are taken from our Table 4, and uncertainties are rescaled
from the estimated uncertainties on the Lx−M from Gran-
dis et al. (2018). We apply a Gaussian normal prior on the
intrinsic scatter σlnMgas = 0.10 ± 0.05 (the scatter param-
eter includes the intrinsic and observational scatter) based
on the constraint on the scatter of the gas mass-halo mass
relation from Mantz et al. (2016).

We explore three different scenarios for a cosmological
analysis. In all this three cases, we use the above mentioned
priors, summarized in Table 6.

(i) Fixing γ’s to zero: This analysis describes the case
where the normalization of the MOR is assumed to be cos-
mology independent, which represents the approach typi-
cally adopted in the literature. In this case, the amplitude
of MOR is simply Πc = Πc,0. We recover the input param-
eters in an unbiased way as shown by the grey contours in
Fig 4.

(ii) Varying γ’s: In this case, we also include the cosmo-
logical dependence on the MOR, as discussed in Section 3.
We now also include γ’s as free parameters, with associated
Gaussian prior with mean and width taken from Table 5.
As a result, the marginalized posterior distributions exhibit
now a stronger degeneracy between Πc,0 and cosmological
parameters as shown by red contours in Fig 4. For example,
now Πc,0 shows a strong anti-correlation with fb, driven by
the positive value of γb without any significant variation in
the one-dimensional posteriors (as expected due to the unin-
formative prior on Πc,0). Such degeneracies otherwise cannot
be tested with observational data. Note that the correlation
between Πc,0 and h0 is induced by the tight Gaussian prior
applied on Ωbh

2
0 and the anti-correlation between Πc,0 and

fb.

(iii) Varying γ’s + weak lensing cosmological dependen-
cies on Πc: In the previous case, we obtained the same

marginalized posterior distributions on the cosmological pa-
rameters, as expected. The combination of multiple cosmo-
logical observables has the potential of breaking degenera-
cies and provide tighter constraints. Therefore, we now ex-
plore the possibility of combining different observables with
different sensitivity to the cosmological parameters through
their MOR.

In a real scenario, the amplitude of the gas-mass rela-
tion is calibrated with weak-lensing mass estimates. How-
ever, weak-lensing calibration also has a cosmological depen-
dence. Simet et al. (2017) derived matter density dependent
mass-richness scaling relation for redMaPPer cluster catalog
using weak-lensing data from SDSS. Within their adopted
model, the amplitude of the scaling relation depends only
on the assumed value of ΩM (in a range ∼ 0.26-0.34) with
a linear decline of log-amplitude as ΩM increases. We use
their weak-lensing mass calibration to model the prior of
our MOR. The amplitude of Mgas −Mhalo relation can now
be written as,

Πc(Ωm) = Πc − ln 10∆(Ωm) (3)

where, ∆(Ωm) = α d logMWL
dΩm

(ΩM−0.3). Incorporating above
dependencies modifies the mean of the Gaussian prior ap-
plied on Πc to 31.40− ln 10∆(Ωm), whereas, the width of the
Gaussian remains unchanged. We measure the gas-mass and
the weak lensing mass, assuming a reference cosmology and
then calibrate the normalization of the gas-mass relation at
that reference cosmology. We then explore the cosmologi-
cal parameter space at each new cosmology. We rescale the
gas-mass relation (assuming our MOR), and the constraints
we obtain from weak lensing as if we were at the new cos-
mology. The results of the analysis are shown by blue con-
tours in Fig 4. Addition of priors from weak-lensing experi-
ments does not impact most of the model parameters due to
the different cosmological dependencies of the weak-lensing
(which is mostly sensitive to Ωm) and Mgas − Mvir scal-
ing relation (which is proportional to the baryon fraction).
However, there is a slight improvement in the constraints on
Ωm (from 0.279+0.059

−0.051 in the previous case to 0.278+0.046
−0.046).

Therefore, a similar analysis with other observables with dif-
ferent cosmological dependencies has then the potentiality of
further breaking these degeneracies and tight cosmological
constraints.

6 Summary

Magneticum simulations provide one of the most powerful
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calibration to model the prior on the amplitude of the MOR.

tools for exploring large scales in the presence of both grav-
itational and complex hydro-dynamical processes in differ-
ent cosmological environments. In this paper, we studied
the mass-observable scaling relation for clusters (Mvir >
2×1014M�) up to redshift z < 1. We examined the cosmol-
ogy dependence of the Mgas−Mvir, Tgas−Mvir, σv−Mvir and
YX −Mvir relations using fifteen large cosmological boxes
produced with the Magneticum simulation set-up with vary-
ing cosmological parameters. These cosmologies are chosen
using Latin hypercube sampling to fairly sample the con-
straints on h0, σ8 and Ωm, obtained from the latest SPT
cluster number count results. We divide the MOR parame-
ters into two categories: i) the astrophysical ones, describing
the normalization (Πc,0), the mass-slope (α), the redshift
evolution (β), and the intrinsic lognormal scatter (σ), and
ii) the cosmological ones (γh0 , γb and γσ8), describing re-
spectively the impact of h0, the baryon fraction fb and σ8,
on the amplitude of the scaling relations.

All four observables considered here show a perfect self-
similar mass dependence i.e. α consistent with zero. The
redshift dependence of Mgas and σv are in good agreement

with the self-similar prediction whereas Tgas and YX show
a small deviation. The scatter in Mgas − Mvir relation is
smallest (3-4%) among the four observables followed by σv
(∼ 5%), Tgas (∼ 11%) and YX (∼ 13%). We investigate
the cosmology dependence of α, β and σ, and do not find
any significant variation, a result that therefore justifies our
assumed functional form for the adopted scaling relations.

With respect to the cosmological parameters, we find
that the h0 dependence of the MOR agrees with the theo-
retical expectation, where the scaling of the observables is
associated with the variation of the critical density of the
Universe (as a function of both redshift and cosmology).

We find Mgas ∝ f0.8
b , i.e. the gas mass - halo mass

scaling relation is slightly shallower but significantly away
from the value expected from a closed box scenario (Mgas ∝
fb) given the uncertainty in γb. Tgas and σv are instead found
to be independent of fb, whereas, YX ∝ f0.78

b driven by the
baryon fraction dependence of the gas mass.

The cosmological dependence on σ8 is consistent with
zero for all the four studied observables.

In order to provide robust uncertainties on the MOR pa-
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rameters (more reliable than the negligible statistical ones),
we estimate the systematic uncertainty of the MOR by prop-
agating the error associated with our choice of the functional
form used to describe the scaling relations.

As a proof of concept, we show the impact of the cosmo-
logical dependence of the MOR for an idealized eROSITA-
like cluster cosmology experiment. More in detail, we show
that our cosmology dependent parametrization introduces
a strong degeneracy between the amplitude of the scaling
relation and the cosmological parameters, without affect-
ing the one-dimensional marginalized posterior distribution.
However, the combination of different observables, which are
subject to different cosmological dependencies, can help in
breaking these degeneracies and therefore provide a powerful
way to tighten cosmological constraints.

Upcoming next generation surveys will allow us to
calibrate the astrophysical parameters of MORs with
unprecedented accuracy. While multi-wavelength data-sets
are fundamental to directly constrain the astrophysical
parameters from observations, the calibration of the cosmol-
ogy dependence of the MOR is only possible through the
analysis of cosmological hydro-dynamical simulations. This
work represents therefore a first step towards understanding
the impact of the cosmological dependence of galaxy cluster
scaling relations for future cluster cosmology experiments.
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Appendix A Other scaling relations

A.1 Lbol -Mvir scaling relation

Bolometric gas luminosity Lbol is the sum of emissivity of all
gas particles within a given overdensity radius. The self-similar

evolution predicts Lbol ∝ M
4/3
vir F (z)7/3. We find a strong devia-

tion from this prediction as well as a more substantial cosmology
dependence of this deviation.

In the left-hand panel of Figure A.1, we show α, β and σ

for the Lbol −Mvir relation (empty triangles). The dark shaded

region represents observational uncertainties taken from Bulbul
et al. (2019). All three parameters exhibit a large variation as we

move from C1 to C15. Most of the X-ray luminosity is associ-
ated to the central cluster regions, as Lbol is proportional to the
density square. For this reason, it is much more strongly affected

by relatively small scale physical processes such as cooling and

Table A1. Same as Table 4 & 5 for Lbol -Mvir scaling relation

(core-subtracted bolometric luminosity as defined in Section A.1)
and M∗ -Mvir scaling relation (F (z) = t∗(z) with σ expressed as

a function of Πc as given by Equation A1).

Lbol M∗

Π -0.43±0.52 28.07 ± 1.41

α 0.12±0.04 -0.09 ± 0.08

β -0.22±0.11 0.003 ± 0.275

σ 0.31±0.08 0.22 ± 0.02

γh0 1.03±0.61 1.20±0.55

γb 1.93±0.06 2.49±0.11

γσ8 -0.37±0.30 1.71±0.28

feedback, which are not naturally accounted by the self-similar

prediction (Pratt et al. 2009; Bulbul et al. 2019).

To confirm this, we replace the total bolometric lumi-

nosity by the core-subtracted luminosity, Lcsbol. Observers gen-
erally remove the contribution coming from central 15% of

R500c to obtain the core-subtracted luminosity. However, we

do not have information stored for individual particles. In-
stead we have observable quantities for six overdensities, ∆i =

2500c, 500c, 500m, 200c, 200m and vir, where the subscript c and

m correspond to the critical density and mean matter density
of the Universe, respectively. We obtain Lcsbol by removing the

contribution coming from the region within 2500ρc, closest the

traditional definition of core-subtracted luminosity. This removes
most of the the cosmology dependence for the resulting mass and

redshift slopes α and β (shown as filled circles and the system-

atic uncertainties shown by light grey shaded region enclosed be-
tween dashed lines in Figure A.1). We find that the associated

log-normal scatter for the Lcsbol −Mvir relation is reduced, how-
ever, it still shows some variation with cosmology.

Results of the fitting procedure for the core-subtracted lumi-
nosity are shown in Table A1. There is a minor deviation from the

self-similar mass slope compared to the observed core-subtracted

LX,bol −M500c relation (Bulbul et al. 2019). Note that the ob-
servations are made at a different overdensity and a different def-

inition of core radius. The redshift slope is in agreement with
observed as well as the self-similar prediction. The scatter in the

scaling relation is ∼ 31%, in a good agreement with the observed

scatter in LX,bol −M500c relation. There are large uncertainties
on γh0

and γσ8 and both of them consistent with zero within

2− σ. However, Lcsbol −Mvir exhibit a strong dependence on the

baryon fraction with Lcsbol ∝ f1.93
b . This dependence is expected

as the gas luminosity is strongly depends on the underlying gas

density (Lbol ∝ ρ2).

A.2 M∗ -Mvir scaling relation

M∗ is the sum of mass of all star particles within a given over-
density radius. In the right-hand panel of Fig A.1, we show the

cosmology dependence of α, β and σ for M∗ -Mvir scaling relation
(empty triangles). The dark grey shaded region is represents ob-

servational uncertainties taken from Chiu et al. (2018), centered

at C8 cosmology (see their Table 3). Chiu et al. (2018) use DES
and WISE/Spitzer data to constrain M∗ -M500c scaling relation
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Figure A.1. Left-hand panels: Empty triangles are for total gas luminosity whereas filled circles are for core-subtracted gas luminosity.
Right-hand panels: Empty triangles are for F (z) = 1 + z, plus symbols for F (z) = t∗(z) and filled circles for F (z) = t∗(z) with σ

expressed as a function of Πc for stellar mass scaling relation. Rest is the same as Figure 2.

for galaxy clusters in the redshift range 0.2 < z < 1.25, with
masses M500c & 2.5× 1014M�. They assume a simple power law

in 1+z as a redshift dependence.

We find that α remains nearly independent of cosmology
with α ∼ 0, close to the self similar prediction (except at C13

where it shows a small deviation from the self-similarity). How-

ever, both, the redshift dependence, β and the log-normal scatter,
σ show a strong cosmology dependence. The most plausible ex-

planation for the strong cosmology dependence seen in β is that

our simplistic assumption, F (z) = 1 + z does not capture the
redshift evolution of M∗ -Mvir scaling relation.

The evolution of the stellar mass fraction of a galaxy is more

directly linked to its stellar age rather than its redshift. Each
star particle in the Magneticum simulations is described by a sin-

gle stellar population (SSP) model, generated at a given redshift

(expansion factor) and then passively evolved. From the post-
processing analysis, we first define the age of the galaxy for each

sub-halo, corresponding to the average expansion factor of all the

associated star particles. We then average (weighted by the stel-
lar mass of the galaxy) over the expansion factor of all galaxies

residing in each main halo to obtain an average redshift of the for-

mation of the stellar content of the cluster. At a given snapshot,
the difference between the age of the Universe at that snapshot

and the age of the Universe at the formation time of the stellar

content represents the stellar age of the halo, t∗(z).

Using t∗(z) (shown by empty plus markers) instead of 1 +

z (empty triangles) removes most of the cosmology dependence

present in β as shown in Fig A.1, thus supporting the idea that the
time evolution of the galaxy population is a better description.

However, this parametrization does not help with the cosmology

dependence of the scatter σ. In Fig A.2, we show σ as a function
of Πc, i.e. the log normalization of the scaling relation. The black-

solid line in the figure follows,

σ = σ0 exp
[
−0.42(Πc −Πc,0)

]
(A1)

where, σ0 = 0.21 and Πc,0 = 28.69. This figure suggests that

the normalization and the scatter in M∗ -Mvir scaling relation
are tightly correlated, and both of them have similar cosmology

dependence. Therefore, instead of further expanding the scatter σ
as a complicated function of cosmological parameters, we choose
to write it a simple function of Πc. As shown in Fig A.1 (filled
circles), the combination of t∗(z) redshift evolution and σ(Πc)
gives us the desired form of M∗ -Mvir scaling relation.

Consistently with Chiu et al. (2018), we find that the mass
slope is smaller than one (i.e. α + αss ∼ 0.9). A direct compari-

son with the redshift evolution is limited by the different adopted

functional form and observed overdensities, but it is in general
consistent with a mild evolution, at least within the probed red-

shift range. Within the adopted parametrization of the scatter,
we find a residual log-normal scatter σ close to 20%. With re-

spect to the cosmological parameters, we find γh0
consistent with

zero given the large systematic uncertainty. On the other hand, we
find M∗ ∝ f2.56

b and σ1.77
8 (with large uncertainty on γσ8 ). This is

not too surprising, since star formation is regulated by much more

complex physical processes than, for example, the physics describ-
ing the relationship between mass and velocity dispersion. Stellar

mass is the outcome of physics acting at small scales, such star

formation and feedback. At the same time, it is directly affected
by large scale cosmology dependent processes, such as cosmolog-
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Figure A.2. Correlation between scatter and log-normalization
of stellar mass scaling relation. Solid-black line follows Equation

A1.

ical infall and mergers. Therefore, the cosmology dependence of
M∗ can be strong and non-trivial as suggested by our results.

Appendix B Scaling relations for M500c

We presented our results for O−Mvir relations in the main analy-

sis. In this section, we present our results for O−M500c relations.
Again note that the observables are measured within R∆i

when

considering the scaling relation O − M∆i
(except for σv which

is independent of the over-density definition). Another difference
between Mvir and M500c MORs is the self-similar redshift evo-

lution. We replace F (z) by E(z) in Equation 1 while dealing with

O −M500c relations. The mass and redshift pivots and the red-
shift cutoff remain the same. The lower mass cutoff is now at

Mcutoff
500c = 2× 1014.

In Figure B.1, we show the variation in astrophysical MOR

parameters as a function of cosmology and in Table B1 we list
the best-fitting results and systematic uncertainties for all six ob-

servables. In general, there is a small increase in the variation of
O−M500c parameters from C1 to C15 compared to that of virial

over-density. For Mgas , Tgas , σv and YX , the systematic un-

certainties are well within the observational uncertainties. In the
case of Lbol and M∗ , systematic uncertainties in the log-normal
scatter are comparable to the observed ones, similar to what we

found for Mvir scaling relations. Given the systematic uncertain-
ties, there are no major differences between the best-fitting results

for Mvir and M500c (except in the case of the redshift evolution

of Lbol).

Appendix C Variation in subgrid prescription

One of the major source of uncertainty in our analysis is fueled
by the unknown cosmology dependence of subgrid prescription.

In the main analysis, the subgrid model parameters are tuned to
the observations at C8, and we then do not vary these parameters

for other cosmologies. In this section, we discuss the impact of
variation in subgrid prescription on the MOR parameters.

We run non-radiative versions of C1 and C15 cosmologies
(shown by empty squares in Figures 2, A.1 & B.1). To explore

the influence of the sub-grid models we modified the most influ-
ential parameters defining the strength of the feedback, namely

the velocity of the galactic wind (kinetic feedback) as well as the

overall strength of the AGN feedback in simulations. For the later

we run two simulations where the feedback efficiency of the AGN

model was changed from the default value of 0.15 (as used in the
simulations varying the cosmology) to either be 0.1 (a1 run) or

0.2 (a2 run). Furthermore, we also explored the influence of the

galactic wind feedback, by changing our default value of 350 km/s
to 500 km/s (w1 run) and 800 km/s (w2 run). While the com-

parison with the non radiative runs give a general feeling of the

importance of the detailed star-formation and black hole model,
this should capture the range of reasonable choices of the details

within the according sub-grid models. We do not find any sig-
nificant difference in the best-fitting values of the astrophysical

parameters when we vary the subgrid model parameters as shown

by empty circles in Figures 2, A.1 & B.1. For clarity, we plot the
results for a2 run only in the figures since the differences between

the parameter constraints obtained from different feedback runs

are negligible. For most of the observables, the variation is well
within the systematic uncertainties and for all of them it is much

smaller than the observed uncertainties.
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Figure B.1. Same as Figure 2 for M500c MORs. For gas luminosity, we show only the results for core-subtracted luminosity and for

stellar mass, we show the results for t∗(z) redshift parametrization with scatter as a function of log-normalization of the scaling relation.

Table B1. Same as Table 4, 5 and A1 for O −M500c scaling relation.

Mgas Tgas YX σv Lbol M∗

Π 31.28±0.34 1.06±0.08 32.33±0.35 6.55±0.02 0.13±0.75 28.47±1.19

α 0.04±0.03 -0.01±0.02 0.03±0.04 0.01±0.01 0.18±0.05 -0.09±0.04

β 0.08±0.05 -0.22±0.08 -0.11±0.05 0.06±0.01 0.36±0.17 -0.05±0.14

σ 0.05±0.01 0.08±0.01 0.10±0.01 0.032±0.002 0.31±0.07 0.22±0.03

γh0 -0.27±0.27 0.81±0.18 0.59±0.35 0.36±0.01 1.45±0.52 1.27±0.67

γb 0.70±0.04 0.13±0.05 0.79±0.06 -0.015±0.001 1.85±0.07 2.57±0.06

γσ8 -0.22±0.08 0.10±0.05 -0.10±0.07 -0.05±0.01 -0.65±0.24 1.65±0.39
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