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Abstract

Almost a century ago, Albert Einstein predicted the existence of gravitational waves,
ripples in the spacetime, as a possible solution of the linearized general relativity. Surpris-
ingly, shortly after that, Einstein himself changed his mind, and since after, like many
other physicists of his time, he believed that they are not physical but an artifact of
linearization. It was not until Herman Bondi’s 1957 Nature paper that the first mathe-
matically precise definition of gravitational waves in the full Einstein equations has been
discovered. Seventeen years later, Hulse and Taylor made the first indirect detection
of this mysterious waves. And finally, in another historic event, only three years ago,
these waves were first detected directly by LIGO. Apart from the astrophysical gravita-
tional waves, a stochastic background of relic gravitational waves is also highly expected.
These tensor perturbations are the only missing (key) prediction of the inflation paradigm
which has not been detected yet. These primordial gravitational waves, either vacuum or
sourced by relic particles, are free-streaming since inflation and can teach us a lot about
the physics at its highest possible energy scales. This talk has two parts. In the first part,
I will talk about the gravitational waves in asymptotically flat spacetimes and will ex-
plain the Bondi’s brilliant formalism to prove the physicality of the gravity waves. In the
second part, I focus on the gravitational waves in our expanding cosmological universe.
I explain the spin-2 fluctuations generated during inflation and the resulting stochastic
gravitational background.
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Part I

Asymptotically flat spacetimes

1 Linearized GR and Gravitational Waves

Shortly after proposing general relativity, Albert Einstein linearized his field equation

Rµν −
1

2
Rgµν = 8πGTµν , (1)
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and realized that general relativity admits solutions in which the fluctuations of the Minkowski
space-time are plane waves traveling with the speed of light. In the following, we explain
some basic features of these linear solutions of general relativity.

1.1 The weak-field metric

A weak gravitational field corresponds to a region of the spacetime that is weakly curved. In
other words, throughout such region, there exist coordinate systems in which the spacetime
metric takes the form

gµν = ηµν + h̃µν , (2)

in which h̃µν and all its partial derivatives are small

h̃µν � 1 and ∂nλ h̃µν � 1 (n > 1). (3)

Note that we can well consider small perturbations about some other background metric, such
that gµν = ḡµν + h̃µν . In particular, we will use a similar weak field approach for cosmological
perturbations around FRW metric in section 3.

In the weak-field general relativity, we expand the field equations in powers of hµν and
keep the linear terms. In fact, from the Einstein equation in (1), we find the linearized
gravitational field equation for hµν

∂α∂
αh̃µν + ∂µ∂ν h̃− ∂ν∂λh̃λµ − ∂µ∂λh̃λν − ηµν(∂α∂

αh̃− ∂σ∂λh̃λσ) = −16πGTµν , (4)

where h̃ is the trace of the field, h̃ = h̃µµ. Although linearized, the above equation does not
look like a wave-equation. However, this messy equation can be simplified in terms of the
field redefinition

hµν ≡ h̃µν −
1

2
ηµν h̃, (5)

which is the trace-reverse cousin of h̃, i.e. h = −h̃. Moreover, these fields are defined only up
to gauge transformations, and in this case, the most convenient gauge is the Lorenz gauge

∂µh
µν = 0. (6)

The linearized field equation in terms of hµν in the Lorenz gauge takes the most simple form
below

∂α∂
αhµν = −16πG Tµν . (7)

which in the vacuum has the desired wave-like form.

1.2 General solution of the linearized field equation

The linearized equation in vacuum has plane wave solutions of the form

hµν = Aµν(kλ) exp(ikλx
λ), (8)

whereAµν are constant components of a symmetric tensor and kµ is the wave vector. Equation
(7) implies that the wave vector is null, kµk

µ = 0. Therefore, the homogeneous linear Einstein
gravity has the following general solution

hµν =

∫
d3k

(
Aµν(~k) exp(ikµx

µ) +A∗µν(~k) exp(−ikµxµ)

)
, (9)
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which is the superposition of all possible plane waves.
In the presence of a source with nonzero Tµν , we need to solve the inhomogeneous equation

with the Green’s equation

∂α∂
αG(xµ − yµ) = δ4(xµ − yµ), (10)

where the required retarded Green’s function for x0 > y0 is

G(xµ − yµ) =
1

(4π)|~x− ~y|
δ(x0 − y0 − |~x− ~y|). (11)

Therefore, the sourced part of the linear gravitational equation is

hµν(~x, t) = −4G

c4

∫
d3y

Tµν(~y, ct− |~x− ~y|)
|~x− ~y|

. (12)

In fact, the gravitational field at an event point (t, ~x) is the integral over the past lightcone
of the event point occupied by the source.

Figure 1: The change in the gravitational field at an event point (t, ~x) is the sum of the effects of the source’s
Tµν at the point ((t− |~x− ~y|), ~y) on the past lightcone.

1.3 The compact-source

For astrophysical purposes, the gravitational source has a spatial size much smaller than the
distance to the point of the observation. In such cases, it is sufficient to consider the first
term in the Taylor expansion

1

|~x− ~y|
=

1

r
+
yixi
r3

+ yiyj
(

3xixj − r2δij
r5

)
+ ..., (13)
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where r = |~x| is the spatial distance from the origin to the field point. In particular, the
linear solution (12) has the far-field approximation

hµν(~x, t) = −4G

c4r

∫
d3yTµν(~y, ct− r), (14)

which decays as 1/r. The physical meaning of each component in the above is as follows:

•
∫
T 00d3y = Mc2 is the total energy of source particles,

•
∫
T 0id3y = P ic is the total momentum of source particles in the xi-direction,

•
∫
T ijd3y = Πij is the integrated internal stresses in the source.

For an isolated source, the conservation of energy-momentum tensor reads

∂µT
µν = 0.

Therefore, in the linear theory, M and P i are conserved. Furthermore, for a compact object,
P i can be written as

P i =
∂

∂y0

[ ∫
T 00(y0, ~y)yid3y

]
y0=ct−r

, (15)

which can always set to zero by choosing the origin of the coordinate system at the source’s
center of mass. Therefore, we can always work in a coordinate system associated to the center
of momentum frame of the source particles in which P i = 0.

Finally, in the center of momentum coordinate, we have the desired hµν components as

h00 = −4GM

c2r
, (16)

h0i = 0, (17)

hij = −4G

c4r

∫
Tij(ct− r, ~y)d3y. (18)

It is possible to further simplify the form of hij for the compact-source case. We can write 1∫
T ijd3y = −1

2

∫ (
∂k(T

ik)yj + ∂k(T
jk)yi

)
d3y. (19)

Moreover, the energy-momentum conservation leads to∫
∂k(T

ik)yjd3y = − d

dy0

[ ∫
T i0yjd3y

]
, (20)

By using the energy-momentum conservation once again and dropping the total derivative
term, we have ∫ (

T i0yj + T j0yi
)
d3y =

d

dy0

[ ∫
T 00yiyjd3y

]
. (21)

Thus, in terms of the quadruple-moment tensor of the source

Iij(y
0) =

∫
T00(y0, ~y)yiyjd3y, (22)

1Note that enclosing the integral outside the source, we dropped the total derivative term in the RHS,∫
∂k(T ikyj)d3y = 0.
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we can express hij in the far-field limit as

hij(t, ~x) = −2G

c6r

d2

dy02

[
Iij(y

0)

]
y0=ct−r

. (23)

The above can be decomposed into the trace and a traceless tensor, γij , as

hij(t, ~x) = hδij + γij , (24)

where γij is

γij = −2G

c6r

d2

dy02

[
Jij(y

0)

]
y0=ct−r

, (25)

and Jij is the reduced quadrupole-moment tensor of the source distribution

Jij = Iij −
1

3
δijI

k
k . (26)

1.4 Polarization states and effect on free particles

In the previous section, we saw that similar to the Maxwell’s equation which predicts elec-
tromagnetic waves, the linearized GR also suggests the existence of gravitational waves. In
this section, we discuss the propagation of gravitational radiation in flat space.

Let us consider a general gravitational perturbation satisfying the empty-space linearized
field equation and the Lorenz gauge condition (see (9)). Under a coordinate (gauge) trans-
formation of the form

xµ 7→ x
′µ = xµ + ξµ, (27)

the transformed perturbation

h̃′µν = h̃µν − ∂µξν − ∂νξµ, (28)

is still in the Lorenz gauge condition provided that the 4-vector ξµ satisfies ∂ν∂
νξµ = 0. Also

the trace-reverse field tensor in (5) transforms as

h′µν = hµν − ∂µξν − ∂νξµ + ηµν∂αξ
α. (29)

We can use the above gauge transformation to set any four linear combinations of hµν to
zero. In particular, the transverse-traceless gauge, so called TT gauge, is defined by choosing

hTT0i = 0 and hTT = 0. (30)

Moreover, we are still in the Lorenz gauge which in the TT gauge gives

∂0hTT00 = 0 and ∂ihTTij = 0. (31)

Notice that for non-stationary (time-dependent) gravitational fields, as for a general gravi-
tational wave disturbance, it implies that hTT00 also vanishes. As a result, for those cases, we
are left with the spatial components of a symmetric, traceless and transverse tensor, i.e. we
have only two dynamical degrees of freedom.
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For a given gravitational wave with a spatial wave-vector ~k = kn̂ in an arbitrary coordinate
system, we can read the form of the wave in the TT gauge as

ATTij = (P ki P
l
j −

1

2
P klPij)Akl, (32)

where Pij is the spatial projection tensor

Pij = δij − n̂in̂j , (33)

which projects tensors to the 2 dimensional surface normal to n̂. Similar to the electro-
magnetic waves, the two dynamical modes in the ATTij can be decomposed in terms of two
polarization states. Writing n̂ in terms of polar and azimuthal angles, θ and φ, as

n̂ = (sin θ cosφ, sin θ sinφ, cos θ), (34)

one can define the complex polarization vectors

e±(n̂) =
1√
2

(θ̂ ± iφ̂), (35)

where θ̂ and φ̂ are orthogonal unit vectors in the plane perpendicular to n̂, in the directions
of increasing θ and φ, respectively. In terms of e± and (θ̂, φ̂), we can construct two types of
polarization states:

i) the linear, plus and cross, polarization tensors,

ePlus
ij (n̂) ≡ 1√

2

(
θ̂iθ̂j − φ̂iφ̂j

)
and eCross

ij (n̂) ≡ 1√
2

(
θ̂iφ̂j + φ̂iθ̂j

)
, (36)

and ii) the circular, right- and left-handed, polarization tensors

eR,Lij (n̂) ≡ e±i e
±
j . (37)

Notice that these two pair of tensors are related as

eR,L(n̂) =
1√
2

(
ePlus ± ieCross

)
(38)

For n̂ = x̂3, the P=plus and C=cross polarization tensors can be written in terms of the
components

eP11 = −eP22 = eC12 = eC21 =
1√
2
, and eP12 = eP21 = eC11 = eC22 = eP,Ci3 = 0, (39)

while the circular ones are given as

eR,L11 = −eR,L22 =
1√
2
, eR,L12 = eR,L21 = ± i√

2
and eR,L3i = eR,Li3 = 0. (40)

In order to have a feeling about the effect of each of the above polarization states of
gravitational waves, it is useful to consider their effect on the geodesic deviation of free-
falling particles. Consider two nearby (non-interacting) free-falling particles initially at rest
with separation vector

ξµ0 = (0, ξi0). (41)
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Figure 2: Effect of gravitational wave in different polarization states on a ring of freely-falling particles. The
continuous lines and the dark filled dots show the positions of the particles at different times, while the dashed
lines and the open dots show the unperturbed positions. This illustration is barrowed from [1].

The arrival of a gravitational wave will perturb the geodesic motion of the two particles and
produce a nonzero contribution to the geodesic-deviation equation. We recall the geodesic-
deviation equation, the changes in the separation four-vector Xµ between two geodesic tra-
jectories with tangent four-vector uµ, is

D2Xµ

Dτ2
= −Rµνλσu

νuλXσ, (42)

where
D

Dτ
≡ uµ∇µ,

is the covariant time derivative along the geodesic of a particle. Therefore, the geodesic
deviation of the nearly particles in the presence of the GW is

D2Xi

Dτ2
= −Ri0j0Xj . (43)

In the rest frame of particle A, around the particle the connection vanishes and in the TT
gauge the coordinate time and the particle’s proper time coincides at the leading order (t =
τ +O((hTTµν )2)), and we simply have

d2Xi(t)

dt2
=

1

2
∂2
t h

TT
ij ξ

j , (44)
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which gives the separation vector as

Xi(t) = ξj
(
δij +

1

2
hTTij (t)

)
. (45)

In figure 2, we present this effect by each of the 4 possible polarization states of GWs on a
ring of freely-falling particles.

2 Physicality of Gravitational radiation?!

Shortly after proposing general relativity, Albert Einstein linearized it and predicted the
existence of gravitational waves as a possible solution of his theory. However, he mistakenly
thought they are not the solutions of the full nonlinear theory and therefore unphysical. He
advanced arguments against the existence of gravity waves, which stopped the development of
the subject for decades. It was only after his death that the actual physical nature of GWs was
understood. In this section, first, I briefly mention the ambiguity and fundamental problems
which led to this mistake. Then, I will explain the mathematically and geometrically precise
definition of GWs by H. Bondi, F. Pirani, I. Robinson, and A. Trautman which proved the
existence of GWs as the solutions of the full theory.

2.0.1 Theoretical issues of linear gravity

Unlike Maxwell’s equations, gravitation is a non-linear theory. That is the direct result of
the fact that gravity gravitates. More precisely, any energy-momentum acts as a source
of gravity, including its energy-momentum tensor. That is unlike the electromagnetic field
(photons in QED) which are not charged. So an important question that one should address
before taking the linear solutions too seriously is:

Do the fully nonlinear Einstein equations admit solutions that can be described as grav-
itational waves? If yes, are they coincide with the linear solutions far from the source? If
everything is fine, then we need to solve some other subproblems, including;

i) What is the definition of a plane gravitational wave in the full theory?
ii) Do they carry energy and angular momentum? Etc.
In 1958, H. Bondi formulated the first mathematically precise definition of GWs, which

followed by papers by H. Bondi, F. Pirani, I. Robinson, and A. Trautman proved the existence
of GWs as the solutions of the full theory and confirmed that they do carry energy. Here,
I briefly review their stunning results. For a nice and recent review on the mathematics of
GWs and the history behind it, see [2]. More details about the asymptotically flat spacetimes,
BMS group, and the IR gravity can be found in [3].

2.1 Geometric definition for GWs

Even before Bondi’s Nature paper, Felix Pirani used a Brilliant idea as the first attempt at
a purely geometric definition of spacetime with gravitational waves. Pirani’s intuition was
based on using the algebraic form of the Weyl tensor, the so-called Petrov classification to
see if spacetime has radiative regions. That intuition makes sense since far from the source
the Ricci tensor vanishes, and the Riemann tensor reduces to Weyl. Here we briefly discuss
this idea and the resulting geometrical description of radiative spacetimes.

In 4d, the Riemann curvature tensor has 20 independent components in which 10 indepen-
dent components are associated to the Ricci tensor. The other 10 independent components
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can be assigned to the (traceless) Weyl tensor which is a conformal tensor

Cµνλσ = Rµνλσ − (gµ[λRσ]ν − gν[λRσ]µ) +
1

3
R gµ[λgσ]ν . (46)

More precisely, it is unchanged under a conformal transformation of the metric 2

gµν 7→ g′µν = Ω2gµν , (47)

C σ
µνλ 7→ C

′ σ
µνλ = C σ

µνλ . (48)

More intuitively, the Weyl tensor expresses the tidal forces that a free-falling body feels along
a geodesic. However, unlike the Ricci tensor, it does not have information about the change of
the volume, but only how the shape of the body is distorted by the tidal forces (see illustration
in figure 3).

Figure 3: Weyl vs. Ricci. Weyl tensor is blind to the scaling and change of volume while Ricci is blind to the
tidal forces!

2.2 Petrov classification for Weyl tensor

The Petrov classification describes the possible algebraic symmetries of the Weyl tensor at
each event in a Lorentzian manifold. This classification was found in 1954 by A. Z. Petrov
and independently by Felix Pirani in 1957. The classification is based on the observation
that an arbitrary asymmetric tensor

Xµν = −Xνµ,

under the action of the Weyl tensor transforms to another asymmetric tensor as

XµνC
µν
αβ = Yαβ. (49)

Therefore, the natural question is to find the eigen-bivectors and eigenvalues of the above
equation, i.e.

1

2
XµνC

µν
αβ = λXαβ. (50)

2Therefore, we have C′µνλσ = Ω2Cµνλσ.
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The Weyl tensor can have at most four linearly independent eigen-bivectors at each given
event which are associated with some null vectors in the original spacetime, called the princi-
pal null directions (PND). The Petrov classification states that there are precisely six possible
types of algebraic symmetries, known as the Petrov types:

• Type I: four simple PNDs,

• Type II: two simple PNDs and two PNDs coincide,

• Type D: two pairs of coinciding PNDs,

• Type III: one triple and one simple PNDs,

• Type N: all PNDs coincide,

• Type O: the Weyl tensor vanishes.

We present these six types of the Weyl tensor in figure 4. Let us take a closer look at the
Petrov types D, N, and O.

Figure 4: The schematic form of the Petrov classification of the Weyl tensor. The green arrows correspond to
each of the principal null directions and the parallel green arrows represent the number of coinciding PNDs.
In the O type, the Weyl tensor vanishes.

Type D regions are associated with the gravitational fields of isolated massive objects, e.g.,
stars and black holes, which is entirely characterized by its mass and angular momentum.
The two coincided PNDs present radially ingoing and outgoing null congruences near the
object.

Type O regions are conformally flat places with zero Weyl tensor, e.g., exact Minkowski
and FRW. In this case, any gravitational effects must be due to the immediate presence of
matter or the field energy of some non-gravitational field.

Type N regions are those regions with transverse gravitational radiation. A spacetime
region is type N, if and only if there exists a null vector, kµ, such that

Cµνλσk
σ = 0. (51)

The four coinciding PNDs are given by this null vector which is the wave vector of the
propagating gravitational wave.

It is noteworthy to mention that the Petrov type of a spacetime may vary from region
to region. For instance, in figure 4, the blue arrow shows the direction of change of Petrov
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type of Weyl tensor as we approach null infinity in an asymptotically flat spacetime. 3 To
summarize, the Weyl tensor of a radiative spacetime must be of type N very far from the
sources, i.e. in the asymptotic future.

2.3 Gravitational radiation after Bondi

Herman Bondi in his Nature paper [5] followed by a subsequent paper by Bondi, Pirani and
Robinson [6], provided the first mathematically precise definition of gravitational waves in
the full Einstein equation. Moreover, he proved that gravitational radiation carries energy.
Here, we review that in asymptotically flat spacetimes. In this part, we adopt the Bondi’s
(u, r, z, z̄) coordinate largely because they are used in most of the literature on asymptotically
flat spacetimes.

Figure 5: The Penrose diagrame of an asymptotically flat spacetime. The future/past null infinities, I±, are
parametrized by retarded/advanced Bondi time u/v. The red ring, i0, is the spatial infinity. The two blue
cones in the upper half, present two null surfaces specified with u = u1 and u = u2. The shaded area is the
cut in I+ with u1 < u < u2.

Far from the source, the spacetime is very close to flat Minkowski space

ds2 = −du2 − 2dudr + 2r2ηzz̄dzdz̄, (53)

and throughout we use the Bondi retarded coordinate (u, r, z, z̄) which in terms of the spher-
ical coordinate (t, r, θ, φ) are given as

u = t− r, z = cot
θ

2
eiφ and z̄ = cot

θ

2
e−iφ. (54)

3This effect is due to the peeling theorem in general relativity which describes the asymptotic behavior of
the Weyl tensor as one goes to null infinity. Let γ be a null geodesic from a point p to null infinity, with affine
parameter λ. Then the theorem states that, as λ approaches infinity

Cabcd =
C

(1)
abcd

λ
+
C

(2)
abcd

λ2
+
C

(3)
abcd

λ3
+
C

(4)
abcd

λ4
+ ..., (52)

where C
(1)
abcd is type N, C

(2)
abcd is type III, C

(3)
abcd is type II and C

(4)
abcd is type I [4].
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Here u is the Bondi (retarded) time while the advanced time (in Minkowski) is

v = t+ r. (55)

• Definition I. Asymptotic flatness: An asymptotically flat spacetime is a Lorentzian man-
ifold in which, the curvature vanishes at large distances from some region so that the
geometry becomes indistinguishable from Minkowski. Outside the source, the Ricci
tensor is zero and therefore, the asymptotic flatness impose some asymptomatic falloff
conditions on the Weyl tensor.

• Definition II. Future null infinity: I+ is defined as endpoints of all future-directed null
geodesics along which r →∞. This null surface is the product of S2 with a null line u
taking values in R. Each null hypersurface, σu0 , intersects I+ in a 2-sphere with u = u0.
(See figure 5)

Now, we want to study gravitational theories in which the metric is asymptotic, but not
exactly equal to, the flat metric, and we abbreviate ΘA = (z, z̄). Choosing the Bondi gauge

grr = grA = 0, (56)

∂r det
(gAB
r2

)
= 0, (57)

the most general four-dimensional metric has the form

ds2 = −Udu2 − 2e2βdudr + gAB

(
dΘA +

1

2
UAdu

)(
dΘB +

1

2
UBdu

)
. (58)

Notice that the gauge condition (56) completely fixed the local diffeomorphisms. Moreover,
it implies that r is the luminosity distance. Up to now, we just wrote a general metric in
the specific gauge (56). Any geometry can be described locally by the metric (58). Imposing
the asymptotic flatness condition at large r with fixed (u, z, z̄) leads to falloff conditions on
the metric components. For the natural choice made by Bondi, van der Burg, Metzner, and
Sachs (BMS) [7], the large-r structure of the metric is constrained to be

ds2 = −du2 − 2dudr + 2r2ηzz̄dzdz̄

+
2mB

r
du2 + rγzzdz

2 + rCz̄z̄dz̄
2 +Dzγzzdudz +Dz̄γz̄z̄dudz̄

+
1

r

(
4

3
(Nz + u∂zmB)− 1

4
∂z(γzzγ

zz)

)
dudz + c.c.+ . . . ,

(59)

where Dz is the covariant derivative with respect to ηzz̄ while γzz, mB and Nz are r indepen-
dent and functions of (u, z, z̄). The first three terms in (59) are simply the flat Minkowski
metric, and the remaining terms are the leading corrections:

• The first quantity mB(u, z, z̄) is the Bondi mass aspect (for Kerr BH, mB = GM),

• The next one is Nz(u, z, z̄) which is the Bondi angular momentum aspect (for a Kerr
BH Nz = 2GmL),

• The last term is γzz̄ which describes the gravitational waves. This quantity is transverse
to I+ and r−1-suppressed comparing to the dominant orders. The Bondi news tensor is
defined as

Nzz̄ = ∂uγzz̄, (60)

which is the gravitational analogue of the field strength in gauge field theories, i.e.
Fuz = ∂uAz.
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• Definition III. The Bondi mass at a Bondi time, u1, is defined as the integral over S2

(the sphere with u1 at I+), as

MB(u1) =
1

4πG

∫
S2

d2zηzz̄mB(u1, z, z̄). (61)

The Bondi mass is positive and time dependent, such that it is always non-increasing with
time. Moreover, in the limit u → −∞, S2

u asymptotically approaches the spatial infinity, i0

and the Bondi mass is equal to the (conserved) ADM mass [8, 9]

MADM = lim
u→−∞

MB(u). (62)

Moreover, the time evolution of mB is given by the Einstein equation component Guu at I+

as

∂umB =
1

4

[
D2
zN

zz +D2
z̄N

z̄z̄
]
− 1

4
NzzN

zz − 4πG lim
r→∞

[
r2TMuu

]
, (63)

where TMuu is the matter field’s energy-momentum tensor. Using the Einstein equation in (61)
and considering a compact source with r2TMuu ∼ O(r−1) at future null infinity, we have

MB(u2)−MB(u1) = −1

4

∫ u2

u1

du

∫
d2zηzz̄NzzN

zz, (u2 > u1), (64)

in which the D2
zN

zz terms vanishes under the S2 integral. This is the famous Bondi mass-
loss formula which measures the amount of mass-loss after some radiation through I+ (see
figure 5). That is zero in case that the Bondi news vanishes. Otherwise, the Bondi mass is
decreasing with time in the form of gravitational radiation.

The angular momentum aspect,
Nz(u, z, z̄),

defined in the above is governed by a constraint equation

∂uNz =
1

4
∂z(D

2
zC

zz −D2
z̄C

z̄z̄)− u∂u∂zmB −
1

4
∂z(CzzN

zz)− 1

2
CzzDzN

zz + 8πG lim
r→∞

r2TMuz .(65)

Integrating the above similar to the mass aspect, one can find the amount of angular mo-
mentum carried by the GWs.

Part II

Expanding Universe

3 Gravitational Waves in expanding Universe

In the first part, we studied gravitational radiation in asymptotically flat spacetimes. In
this part, we want to explore the generation and evolution of gravitational waves in the
cosmological background.
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Cosmological era Eq. of state Scale factor Hubble SEC

Cosmic inflation w ' −1 a(t) = Exp(Ht) H(t) = Hinf No

(ε = − Ḣ
H � 1) w = −1 + 2

3ε a(τ) = − 1
Hτ H(τ) = − 1

τ

Radiation era w = 1
3 a(t) =

(
t
tI

) 1
2 H(t) = 1

2t Yes

a(τ) = τ
τI

H(τ) = 1
τ

Matter era w = 0 a(t) =
(
t
tJ

) 2
3 H(t) = 1

3t Yes

a(τ) =
(
τ
τJ

)2 H(τ) = 2
τ

Table 1: Equation of state, scale factor, and the Hubble parameter for the each cosmological eras. The last
column shows the validity or violation of strong energy condition (SEC) during that era, i.e. if ρ + 3P > 0.
Here H ≡ aH.

3.1 Cosmological background

Modern cosmology is based on two key observational facts: i) the universe is expanding and
ii) on large scales (> 100Mpc) the matter distribution is homogeneous and isotropic. The
average spacetime is then described by the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
metric

ds2
FLRW = −dt2 + a2(t)(

dr2

1− kr2
+ r2dΩ2), (66)

where t is the cosmic time, a(t) is the scale factor, and k = 0,+1,−1 describe flat, positively
curved and negatively curved spacelike 3-hypersurfaces, respectively. From now on, we re-
strict our discussion to the case of the flat universe with k = 0 which is favored by present
observations.

For a perfect fluid with energy density, ρ, and equation of state, w

P = wρ,

we have the Friedmann equations as

3M2
Pl(
ȧ

a
)2 = ρ and M2

Pl

ä

a
= −1

6
(1 + 3w)ρ. (67)

The scale factor is a function of only time and during different cosmological eras is given in
the table 1.

The cosmic time, t, is related to the conformal times, τ , as

τ ≡
∫

dt

a(t)
. (68)

Solving for the scale factor in (67), we have a(t) in terms of the cosmic time and conformal
time respectively as

a(t) =

(
t

tI

) 2
(1+3w)+2

and a(τ) =

(
τ

τI

) 2
(1+3w)

, (69)

where tI and τI are some positive constants.
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τ

τ0

τrec

τi r

BA

θ

Figure 6: The (comoving) causal past of an observer today at τ0 (redshift z0 = 0), in FLRW spacetime made
of ONLY ordinery matter, i.e. 1 + 3w > 0. The orange line shows the last scattering surface, τrec (at redshift
zrec ' 1090). A and B are two causaly disconnected points at last scattering surface. In fact, the angle spaned
by the shaded area at the last scattering surface is the comoving horizon at recombination.

In order to understand the causal structure of the cosmological spacetime, ds2 = 0, we
consider the radial null geodesics given as

r(τ)− r(τI) =

∫ τ

τI

dτ ′ =

∫ a

aI

d ln a′

a′H(a′)
, (70)

which is specified in terms of the comoving (particle) horizon, (aH)−1, as

(aH)−1 =
(1 + 3w)

2
τI a

(1+3w)/2. (71)

Horizon problem:
Ordinary forms of matter, with positive pressure, satisfy the strong energy condition

(SEC), i.e. ρ + 3P > 0. Thus from (71), the comoving horizon increases as the universe
expands. Now, let us compute the angle spanned by the comoving horizon at recombination,
θ. As we see in figure 6, θ is given as

sin θ =
2(τrec − τi)
τ0 − τrec

. (72)

On the other hand, we can read the τ integral in (68) as

τ − τI = −
∫ z2

z1

dz

H(z)
, (73)
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where z is the redshift parameter

1 + z =
1

a(z)
, (74)

in which we set the scale factor today to unity, a0 = 1. Moreover, the Hubble parameter is

H(z) =
√

Ωm(1 + z)3 + Ωγ(1 + z)4 + ΩΛ, (75)

where Ωm = 0.3, Ωγ = Ωm
1+zeq

, and ΩΛ = 1 − Ωm are the matter, radiation, and (late time)

dark energy fraction (zeq = 3400). Using (73) and (75) in (72) and solving the integral, we
find

θc ' 2.3◦. (76)

Therefore, causal theories should have vanishing correlation functions for θ > θc = 2.3◦ and
therefore CMB at the time of decoupling naively should be consisted of about 104 causally
disconnected patches. However, we observe an almost perfectly uniform CMB temperature
field across super-horizon scales at recombination. As we see in the following, cosmic inflation,
an early period of accelerated expansion in which the SEC is violated, solves the horizon
problem dynamically and allows our universe to arise from generic initial conditions.

3.2 Cosmic inflation

The inflation paradigm postulates a brief period (within 10−34 s) of quasi-exponential accel-
erated expansion during which the scale factor increased by over 60 e-folds. This considerable
expansion is sourced by a negative pressure component in energy-momentum of the matter
contents and drives the universe towards almost perfect homogeneity, isotropy, and flatness
that we have observed.

Our discussion of horizon problem was based on the validity of SEC (1 + 3w > 0) and
therefore growing Hubble sphere of the standard Big Bang cosmology. A simple solution
therefore is a phase of decreasing Hubble radius in the early history of the universe,

d(aH)−1

dt
< 0 where 1 + 3w < 0. (77)

If this lasts long enough, e.g. aend
ainitial

= e60, the horizon problem can be solved.
During this phase, the spacetime is very close to a de Sitter space and the Hubble pa-

rameter, H, is almost constant. The deviation from a perfect de Sitter space is quantified in
terms of two slow-roll parameters

ε ≡ − Ḣ

H2
and η =

ε̇

Hε
, (78)

which should be small during the slow-roll inflation. For a very nice lecture notes on differnt
aspects of cosmic inflation see The Physics of Inflation by Daniel Baumann.

4 Gravitational waves in cosmological eras

We perturb the metric around cosmological background and keep only the transverse trace-
less perturbation, i.e. gravitational waves, as

ds2 = a2

(
− dτ2 + (δij + γij)dx

idxj
)
. (79)
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Figure 7: Evolution of conformal horizon, (aH)−1 (red line), comparing with a given wavelength, k−1 (blue
line), as a function of ln a. Image credit: Inflation by Daniel Baumann [10].

Inflation radiation matter

1

H

a

k

a

x

Figure 8: The Hubble radius, 1
H

, and the physical wavelength, a
k

, as functions of the scale factor. Notice that
X is the physcial coordinate, X = ax. The black line shows 1/H, the red and blue lines are the physical
wavelength of two modes which re-entered the cosmic Horizon during radiation domination (RD) and matter
domination (MD) eras respectively. The shaded yellow region shows causally connected points, while the gray
shaded one shows our ignorance about reheating.

It is more convenient to go to the Fourier space and expand the field in terms of its polarization
states

γij(τ,~k) =
∑

σ=+,×
eσij(k̂)γσ(τ,~k), (80)
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where e+
ij(k̂) and e×ij(k̂) are the plus and cross polarization tensors respectively. The field

equation of γσ(τ,~k) is

γ′′σ(~k) + 2Hγ′σ(~k) + k2γσ(~k) = 0, (81)

where again a prime denotes a derivative with respect to the conformal time andH = aH. We
can extract analytically some general features of the solution by using the field redefinition

hσ(τ,~k) ≡ aγσ(τ,~k). (82)

The field equation takes the simple form

h′′σ(τ,~k) + (k2 − a′′

a
)hσ(τ,~k) = 0, (83)

where ′ means derivative with respect to the conformal time and the effective mass term
a′′

a = 1
2(aH)2(1− 3w) is

a′′

a
=


2H2(1− ε) ' 2

τ2
(1− ε) inflation

0 radiation-era
1
2H

2 ' 2
τ2

matter-era

. (84)

When the mode functions are outside the horizon (ka > 1), the gravitational wave is a constant

while when it is well inside the horizon (ka � 1), it is a simple oscillating function scales like
1/a

γσ(τ,~k) ∝

{
γ0 (ka � 1)
1
a sin(ka + α) (ka � 1)

, (85)

where γ0 and α (a phase), are both given by the initial conditions. See figure 9. The energy
density of the gravitational waves are given as

ρGW =
1

32πG

∑
σ=+,×

〈γ̇2
σ〉, (86)

where the expectation value denotes average over several wavelengths. For gravitational
waves inside the horizon, we have γ̇ ∝ k cos(ka + α)/a2 which gives

ρGW ∝ a−4,

as it is expected from any form of radiation.

4.1 Inflation and primordial gravitational waves

Cosmic inflation generates primordial scalar perturbations that seeds all structure formation
in the observable universe. More precisely, most of the inflationary models consistent with
the date predict an adiabatic and almost non-Gaussian scalar perturbation, the comoving
curvature perturbation ζ with a nearly scale invariant power spectrum as

∆2
ζ = As(k∗)

( k
k∗

)ns−1
, (87)
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Figure 9: The time evolution of γ+,×(τ, k), normalized to its initial value as a fucntion of x = log(a), for
three different values of the wavelength. Image credit: Gravitational Waves. Vol. 2: Astrophysics and
Cosmology [11].

which specifies in terms of two numbers As, and the spectral tilt

ns ≡ 1 +
d lnPζ
d ln k

, (88)

which is of the order of slow-roll parameters. Another critical prediction of inflation is the
existence of a stochastic primordial GWs background (PGW) generated by tensor perturba-
tions in the geometry of the very early universe. In this part, we discuss this mechanism.
Just like CMB, this relic stochastic GWs is a random noise of GWs with no sharp, specific
characters in either the time or frequency domains. However, GWs has an advantage over
the CMB because while photons decoupled about 4×105 years after the big bang, primordial
GWs could free-stream from times as early as (possibly) Planck scales.

We are interested in metric perturbations that correspond at present time to gravitational
waves. The linear Einstein equation for such a metric perturbation is given by Eq. (7) where
∇µ is the covariant derivative in FLRW metric and it is sourced by the anisotropic stress
tensor of matter fields

πij = δTij −
1

3
δijδT

k
k . (89)

More precisely, we have

∂2
0γij + 3H∂0γij − a−2∂2

kγij = 8πGπTij , (90)

in which πTij is the traceless and transverse part of πij .
4 Before going any further, note that

the tensor sector of perturbations, hij and πTij , are invariant under infinitesimal coordinate
transformations. Hence they are gauge invariant and physical quantities.

• Quantum origin of the perturbations:

4Using the standard scalar, vector, tensor decompostion, we can decompose πTij as

πij = ∂2
ijπ

S − 1

3
∂2πSδij + 2∂(iπ

V
j) + πTij ,

where ∂iπ
V
i = ∂iπ

T
ij = 0 [12]. Being a perfect fluid or having irrotational flows are physical properties,

thus their corresponding conditions are gauge-invariant. In other words, πS , πVi , π
T
ij are all invariant under

infinitesimal space-time coordinate transformations.

19



For solving the field equation, we then need to set the initial condition. Assuming seeds of
perturbations to be from the quantum fluctuations, so-called Bunch-Davies vacuum, imposes
the initial value in the asymptotic past as

lim
τ→−∞

h+,×(τ,~k) =
1√
2k
e−ikτ , (91)

hence both polarization states have the same initial values. In general relativity and the ab-
sence of cosmological higher spin fields, e.g., gauge fields and fermions, to serve as a stochastic
source for gravitational waves, the anisotropic stress is zero. Therefore, the resulting pertur-
bations are originated by vacuum fluctuations

h~k(τ) ≡ h+(τ,~k) = h×(τ,~k). (92)

which are un-polarized.

4.1.1 Adiabatic perturbations

Interestingly, regardless of the cosmological era which we have, in the limit that the physical
wavelength is much smaller than the Hubble rate, k/a� H, the field equation (81) has two
solutions

h~k,1(τ) = cst. and h~k,2(τ) =

∫ τend

τ

dτ ′

a2(τ ′)
. (93)

which as we see, the second solution is decaying with time. Moreover, these are the solutions of
a second order differential equation so in the absence of any new degree of freedom, the above
are all the possible super horizon solutions. Therefore at late times and for a genetic initial
condition, the gravitational waves eventually get dominated by h~k,1. The above solutions are

the adiabatic modes which are the result of the Weinberg’s adiabatic modes theorem [12].
Here we only use its automatic result, but later in section 5.0.1, I will get back to it and discuss
this theorem. The above simple observation has an amazing physical consequence. Recalling
that during inflation many Fourier modes leave the Hubble horizon which eventually during
radiation or matter era return to our causal patch, the above implies that once the adiabatic
mode is outside the horizon it is conserved and constant, regardless of the complicated and
unknown physics inside the horizon. Thus, this powerful effect allows us to connect the
distant past of our Universe to its recent past. Therefore, in the absence of the super-horizon
entropy and anisotropic inertia perturbations, inflation predicts adiabatic fluctuations.

4.2 (Almost) scale invariant Power spectrum

Here by solving the field equation in (83). The general solution during inflation is expressed
as a linear combination of Hankel functions

h~k(τ) '
√
π(k|τ |)

2
ei(1+2ν

R
)π/4

(
c1H

(1)
ν
R

(τ) + c2H
(2)
ν
R

(τ)
)
, (94)

where

νR '
3

2
+ ε. (95)
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Now, focusing on inflationary era and after imposing the usual Minkowski vacuum state
for the inflationary solution in (94), we obtain c1 = 1 and c2 = 0 in (94). The 2-point function
of gravitational waves is

〈γ~kγ~k′〉 =
2π2

k3
δ3(~k + ~k′)∆2

T (96)

where ∆2
T is the power spectrum of the fluctuations. During inflation, the super-horizon

(k > aH) tensor power spectrum is

∆2
T =

2

π2

H2

M2
Pl

(
k

aH
)nT
∣∣∣∣
k=aH

, (97)

and its deviation from exact scale invariant, tensor spectral index nT , is

nT =
d ln ∆2

T

d ln k
= −2ε . (98)

The power spectrum predicted by inflation is specified by the energy scale of inflation and is
nearly (but not exactly) scale invariant. Another important quantity is the tensor-to-scalar
ratio

r =
∆T

∆ζ
, (99)

which is the ratio of the power spectrum of GWs to the scalar curvature perturbations. The
current upper limit on tensor fluctuations is

r0.05 < 0.07 at 95% CL

which comes from the latest joint analysis of Planck and BICEP2/Keck array measurements
[13].

4.3 Nearly non-Gaussian stochastic field

At the level of linear approximation, inflationary fluctuations have a Gaussian probability.
The statistical properties of an isotropic Gaussian fields are completely determined by the
2-point function

〈ϕk1ϕk2〉 = (2π)3δ3(~k1 + ~k2)Pϕ(k1), (100)

while any odd-point function, e.g. its bispectrum, is exactly zero

〈ϕk1ϕk2ϕk3〉 = 0. (101)

This Gaussianity is a direct consequence of i) neglecting 2nd order terms in the equation
of motion as well as ii) the cosmological principle. However, both of the above are not
exact conditions during inflation and cosmic fluctuations break them both. As a result, the
generated perturbations are not exactly Gaussian. The deviation from Gaussianity can be
formulated in terms of the bispectrum as

〈ϕk1ϕk2ϕk3〉 = (2π)3δ3(~k1 + ~k2 + ~k3)Bϕ(k1, k2, k3). (102)
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Figure 10: Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002Mpc−1 from Planck alone
and in combination with BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected
inflationary models. Image credit: Planck 2018 results X: Constraints on inflation [14].

If the power spectrum is scale-invariant, then the shape of the Bispectrum only depends on
two numbers as

Bϕ(k1, k2, k3) = k−6
1 Bϕ(1, x2, x3), (103)

where x2 = k2
k1

and x3 = k3
k1

. In figure 12, we present the possible momentum configurations
of the bispectrum. Considering k1 to be not greater than k2 and k3, we have the following
three possible limits. In the limit that k1 � k2 ∼ k3, the bispectrum is called squeezed. In
case that k1 = k2 = k3 it is called equilateral and if k2 = k3, it is folded. Depends on the
details of the inflationary model, the bispectrum has a peak in different limits.

Figure 11: The shaded area shows the possible momentum configurations of the bispectrum. Image credit:
Primordial Non-Gaussianity by Daniel Baumann.

Computing the gravitons 3-point function as well as the combination of 2 scalars and
one graviton Bispecturms in the squeezed limit for the vacuum GWs in general relativity,
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one realizes that they are both slow-roll suppressed. The reason for that is the fact that
the self-interaction terms are subleading by slow-roll parameters. In the squeezed limit, an
adiabatic long (classical) wave gravitational wave acts as a coordinate transformation for the
other short wavelength modes, either gravitons or scalars. That then leads to the Maldacena’s
powerful consistency relation which we review in the next section.

5 Adiabatic modes and inflationary consistency relations

Here, we briefly review Weinberg’s adiabatic modes theorem and Maldacena’s inflationary
consistency relations. For more details on Weinberg’s adiabatic modes see [12, 15] and for
further information on Maldacena’s inflationary consistency relations see the seminal paper
[16]. The adiabatic modes and consistency relation can be extended to include the gradient
expansions. Maldacena’s original consistency relation has been generalized to the conformal
consistency relation in [17] and to an infinite set of Ward identities in [18].

5.0.1 Weinberg’s Adiabatic modes

We start with the construction of Weinberg’s adiabatic modes in the Newtonian gauge which
is essential for the derivation of the consistency relations. Fixing the gauge, uniquely specifies
all the modes with finite momentum, k 6= 0. However, there are residual gauge symmetries
for the very long-wavelength modes, which remain a symmetry of the gauge-fixed action.
Starting with the flat FRW metric as the unperturbed metric

ds2 = −dt2 + a2dx2. (104)

Here we focus on the implications of the diffeomorphism invariance on the nature of the very
long-wavelength modes with k/H � 1. Therefore, only the homogeneous diffeomorphisms
are relevant. The general spatially homogeneous perturbed metric in the Newtonian gauge is

ds2 = −(1 + 2Φ(t))dt2 + a2

(
(1− 2Ψ(t))δij + γij(t)

)
dxidxj , (105)

where Φ and Ψ are the Bardeen potentials and γij is the traceless tensor perturbation, gravity
wave. 5 One can decompose the general spatially homogeneous perturbed energy-momentum
in the Newtonian gauge as

T00 = −ρ̄g00 + δρ(t) and T0i = −(ρ̄+ P̄ )∂iδu(t), (106a)

Tij = P̄ (t)gij(t) + a2

(
δijδP (t) + ∂2

ijπ
S(t) + πTij(t)

)
, (106b)

where a bar denotes an unperturbed quantity, δρ, δP and δu are the perturbed density,
pressure and velocity potential respectively. Moreover, πS and πTij are the scalar and tensor

anisotropic inertia which characterize departures of Tµν from the perfect fluid form. 6

Under the action of diffeomorphism transformations

xµ 7→ x̃µ = xµ + εµ(t,x), (107)

5Here we neglect the vector perturbations due to their damping nature in most of the inflationary models
including our axion-gauge field model.

6It is interesting to note that in the decomposition (106b), the effects of bulk viscosity are included in
δp [15].
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there is a εµ which generates spatially homogeneous transformations on the metric and pre-
serve the Newtonian gauge [12]

ε0(t,x) = −f(t)− χ(x), (108a)

εi(t,x) = (θδij + σij)x
j − ∂iχ(x)

∫
dt

a2(t)
, (108b)

where θ is a constant scalar and σij is a constant, traceless and symmetric matrix7, σii = 0.
Therefore, choosing the Newtonian gauge, we are still left with residual gauge symmetries
for the zero wavenumber modes. These diffeomorphisms do not vanish at spatial infinity and
therefore are called large gauge transformations. The scalar functions f(t), χ(t) and θ act
only on the scalar perturbations

Φ(t) 7→ Φ(t) + ḟ(t) and Ψ(t) 7→ Ψ(t) + θ −Hf(t), (109)

while keep the tensor perturbations untouched. On the other hand, σij acts only on the
gravitational waves as

γij(t) 7→ γij(t)− 2σij . (110)

Therefore, if Φ(t), Ψ(t) and γij(t) are solutions of the spatially homogeneous Einstein equa-
tions, their transformed quantities and their differences are also the spatially homogeneous
solutions. In particular, in the scalar sector, we have spatially homogeneous solutions of the
form

ΦA(t) = −ḟ(t) and ΨA(t) = Hf(t)− θ, (111)

which corresponds to a cosmic fluid given as

δρA(t) = − ˙̄ρf(t), δPA(t) = − ˙̄Pf(t), δuA(t) = f(t), (112)

with a vanishing scalar anisotropy

πSA(t) = 0. (113)

That leads to a constant comoving curvature (R ≡ −Ψ + Hδu) and curvature perturbation
(ζ ≡ −Ψ−Hδρ/ ˙̄ρ)

RA(t) = ζA(t) = θ. (114)

There is also a spatially homogeneous solution in the tensor sector as

γA
ij(t) = 2σij , (115)

with a vanishing tensor anisotropic inertia

πTA
ij (t) = 0. (116)

Up to now, the solutions (111) and (115) are only gauge degrees of freedoms for the k = 0
mode and the Weinberg’s theorem relates them to the physical modes. The essential step in

7In general, εi(t,x) can have a constant term εi0 as well as a term like ωijx
j where ωij = −ωji. Here, however,

we ignored them because (due to the spatial translational and rotational symmetry of the background metric)
they do not have any effects on the linear perturbed metric.
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Weinberg’s theorem is as follows. In case that the anisotropic inertia πij(t,k) and the entropy

perturbations,
˙̄ρδP− ˙̄Pδρ
3(ρ̄+P̄ )2

, vanish in the limit k/H � 1, the spatially homogeneous solutions

are extendible to modes with k 6= 0. Since solutions with non-zero wavenumbers have no
residual gauge symmetry in the Newtonian gauge, these modes are physical. When solving
the linearized Einstein equations, there are two scalar and two tensor physical solutions which
are constant at k/H � 1 (eq.s (114) and (115)), called adiabatic solutions.8 One immediate
consequence of this theorem is that these modes freeze out at horizon crossing and become
indistinguishable from a redefinition of the background metric

ḡµν(t) + δgA
µν(t) = ¯̃gµν(x̃), (117)

which implies

δgA
µν(t) = −Lεḡµν(t), (118)

where Lε denotes the Lie derivative with respect to εµ.

5.0.2 Gaussianity and Maldacena’s consistency relation

Now, we turn to the consistency relations which is a powerful probe of the early universe
physics and holds under very general conditions, i.e., when the long-wavelength mode is
adiabatic. Therefore, assuming Banch-Davis initial condition, the scalar consistency relation
only holds for single clock inflationary models in which the entropy perturbation is zero.
However, gravity waves consistency relations hold for more general inflationary models. More
precisely, assuming Banch-Davis initial condition, only models in which πTij 6= 0 at super-
horizon scales can violate tensor consistency relations, e.g., solid inflation [19] and anisotropic
inflation [20]. As shown in [21], such inflationary models violate the cosmic no-hair conjecture.

Since the tensor modes are the main focus of this work, here we present the consistency
relation for the gravity waves. The scalar consistency relation is the same and one only needs
to replace γA

ij with the (adiabatic) curvature perturbation ζA. The key physical point behind
the consistency relations is the observation that the adiabatic long-wavelength modes can be
removed by the local coordinate transformation of the background metric, i.e. (118). Hence,
they act as a classical background for the short wavelength modes, which freeze out much
later than the long mode. In particular, an n-point correlation function of the short modes
can be written as

〈ζ(x1)ζ(x2) · · · ζ(xn)〉γAij(x) = 〈ζ(x̃1)ζ(x̃2) · · · ζ(x̃n)〉, (119)

which Taylor expanding RHS around xi, we find the change of the short distance n-point
correlation function as

δ〈ζ(x̃1)ζ(x̃2) · · · ζ(x̃n)〉 =
n∑

I=1

δ~xI.~∇I〈ζ(x1)ζ(x2) · · · ζ(xn)〉+ · · · , (120)

where xi and x̃i are related as

x̃i = xi +
1

2
γA
ijx

j . (121)

8This solution leads to equal values of δρx/ρ̄x for all individual elements in the cosmic fluid which explains
the name adiabatic.
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As a result, the (n+1)-point correlation function including the long-wavelength mode is given
as

〈γA
ij(x)ζ(x1)ζ(x2) · · · ζ(xn)〉 ' 1

2

〈
γA
ij(x)γA

kl(x)
n∑

I=1

xkI ∂l〈ζ(x1)ζ(x2) · · · ζ(xn)〉
〉
, (122)

in which we only keep the dominate term that has the relevant contribution. The above
equality is the consistency relation in real space. Going to the Fourier space, we can expand
γij(q) as

γij(q) =
∑
λ=±

γλ(q)eij(q̂, λ), (123)

where eij(q̂, λ) are the time-independent polarization tensors, eij(q̂, λ)e∗ij(q̂, λ̃) = 2δλλ̃, in
which λ = ± corresponding to the ±2 helicity states. Moreover, the two-point function at
late time is given as

〈γλ(q)γλ′(q̃)〉 = (2π)3δ(3)(q + q̃)P vac
γ (q)δλλ

′
, (124)

in which

P vac
γ (q) = q−3

(
H2

M2
Pl

)
, (125)

is the power-spectrum. Then using the above and neglecting the gradients, we arrive at the
Maldacena’s consistency relation

〈γλ(q)ζk1ζk2 · · · ζkn〉′ ' −
1

2
P vac
γ (q)

n∑
I=1

eij(q̂, λ)kIi∂kIj 〈ζk1ζk2 · · · ζkn〉′ for q → 0, (126)

where the prime in 〈· · · 〉 indicates that we extracted the prefactor (2π)3δ(3)(q +
∑n

I kI)
associated to momentum conservation. Note that the above result follows directly from the
fact that adiabatic long-wavelength gravity wave is equivalent to a change of coordinate for
the short wavelength mode, regardless of the super-horizon behavior of the short modes.
Therefore, as far as our inflationary system generates adiabatic tensor perturbations the
above consistency relation holds.

6 Gravitational waves and CMB

We now come to the effect of GWs on CMB anisotropies.

6.1 Integrated SachsWolfe effect

For that purpose we need to compute the effect of the perturbations on the photon trajectories

dPµ

dλ
+ Γµνσ(xα(λ))P νP σ = 0, (127)

where Pµ = dxµ

dλ is the photon’s 4-momentum and Γµνσ(xα(λ)) is the Christoffel symbols up
to the first order of perturbations. The photon’s energy measured with respect to the rest
frame of the baryon-photon fluid is

E(xν) ≡ −Pµ(xν)uµ(xν). (128)
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Suppose that a photon emitted with energy EE at a point, xµE , and is observed at xµO with
EO. Then, the temperature at xµE and at xµO in a rest frame of baryon-photon fluid are given
as

EO
EE

=
TO
TE

. (129)

From the above and the photon’s geodesics (127), the temperature perturbation today in
direction n̂ is given in terms of the perturbations at the time of the photon decoupling, τdec,
as

∆T (n̂)

T
=

1

4
δγ(τdec, rLn̂) + Ψ(τdec, rLn̂) + Φ(τdec, rLn̂)

+

∫ τ0

τdec

dτ

[
Φ′(τ, (τ0 − τ)n̂) + Ψ′(τ, (τ0 − τ)n̂)− 1

2
ninjh′ij(τ, (τ0 − τ)n̂)

]
,(130)

where rL = τ0− τdec, δγ(τdec, rLn̂) is the density perturbation in the radiation fluid and ni is
the propagation direction of the photon. The second line is the integrated SachsWolfe effect
which receives contributions from the whole period from τrec to the present, τ0. That includes
the effect of a time-varying gravitational wave during the passage of the CMB photons from
the last scattering to the present.

6.2 CMB polarization

Up to now, we considered the temperature fluctuations in CMB which its two-point temper-
ature correlation function provides an important characterization of CMB anisotropies. In
addition to the temperature anisotropies, there is more information to be gained by measur-
ing CMB. More precisely, CMB photons are expected to be polarized due to the Thomson
scattering by free electrons before decoupling. The polarization of CMB photons provides
the cleanest and a promising method to detect primordial gravitational waves.

Figure 12: Left: A brief thermal history: nucleosynthesis, thermalization, recombination and reionization.
Image credit: from Wyne Hu lecture notes [22]. CMB formed during the recombination epoch at redshift
zrec ' 1090, when free electrons became bound into hydrogen and helium. The universe back to full ionization
again around z ∼ 10 leaving an extended neutral period between recombination and reionization. Right:
Thomson scattering of CMB radiation by a free electron. An unpolarized radiation with quadratic anisotropy
becomes linearly polarized by Thomson scattering.
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The polarization of an electromagnetic wave is described in terms of the Stokes param-
eters. Consider a monochromatic electromagnetic plane wave that propagates along the
direction x̂3, can be decomposed as

~E = e−i(wt−
~k.~x)

E1e
iθ1

E2e
iθ2

0

 . (131)

We can describe the above radiation field with the 4 Stocks parameters

I ≡ 〈E2
1〉+ 〈E2

2〉, (132)

Q ≡ 〈E2
1〉 − 〈E2

2〉, (133)

U ≡ 2〈E1E2 cos(θ1 − θ2)〉, (134)

V ≡ 2〈E1E2 sin(θ1 − θ2)〉, (135)

where only 3 of the above are independent, i.e.

I2 = Q2 + U2 + V 2.

See figure 13 for the polarization corresponding to each of the Stokes parameters.

• The quantity I is total intensity of the wave, here the temperature anisotropy.

• Q describes the difference between the linear polarization in ê1 and ê2 directions.

• The U and V parameters give information on the phases. In particular, expanding the
wave in the ±1 helicity polarization states, ê± = (ê1 ± iê2)/

√
2, we have

V = 〈E+〉2 − 〈E−〉2, (136)

which represents the difference between the positive and negative helicity intensities.
The U can be written as

U = 2〈E+E− sin(θ+ − θ−)〉. (137)

• Note that the mechanisms that generates CMB polarization produces only linear polar-
izations, and no circular one. Therefore, in the absence of any parity violation interaction
during inflation, we can set V = 0.

• Finally, the angle of polarization is

tanα =
E2

E1
. (138)

Under a rotation of angle ϕ around the ê3 as(
x′

y′

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
x
y

)
, (139)

the intensity, I, and the helical (circular) polarization, V , remain invariant. However, the
linear polarizations, Q, and U , transforms like spin-2 fields(

Q′(ê3)± iU ′(ê3)
)

= e±2iϕ
(
Q(ê3)± iU(ê3)

)
. (140)
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Therefore, I and V can be expanded in terms of scalar (spin-0) spherical harmonics, just as
the temperature is expanded as

Θ(n̂) =
∑
l,m

alm Ylm(n̂), (141)

while Q± iU can be expanded in terms of spin-weighted (spin-2) spherical harmonics as

Q(n̂)± iU(n̂) =
∑
l,m

ã±lm ±2Ylm(n̂). (142)

For any arbitrary n̂ direction, a function sf(n̂) defined on the sphere is called to be of
spin s if under a rotation of angle ϕ around the n̂, it transforms as

sf
′(n̂) = e−isϕsf(n̂).

Any function of spin-s on the sphere can be expanded in terms of the spin-s weighted spherical
harmonics, sYlm(n̂). The spin-weighted spherical harmonics are related to the scalar (spin-0)
spherical harmonics as

sYlm(n̂) ≡
√

(l−s)!
(l+s)!(∂

+)sYlm(n̂) for 0 ≤ s ≤ l (143)

sYlm(n̂) ≡
√

(l+s)!
(l−s)!(−1)s(∂−)−sYlm(n̂) for − l ≤ s ≤ 0, (144)

where ∂± are the spin raising and lowering operators given as

∂± sf(n̂) = − sin±s θ

(
∂θ ±

i

sin θ
∂φ

)[
sin∓s θ sf(n̂)

]
. (145)

Using (143) and (144), we can express the polarization as

(∂±)2
(
Q(n̂)± iU(n̂)

)
=

√
(l + 2)!

(l − 2)!

∑
l,m

ã±lm Ylm(n̂). (146)

Since the Stokes parameters, Q± iU , are not invariant under rotation, it is more convenient
to expand them as (

Q(n̂)± iU(n̂)
)

=
∑
l,m

(
aElm ± iaBlm

)
±2Ylm(n̂). (147)

Therefore, one can define two scalar (spin-0) fields instead of the spin-2 fields, Q± iU , as

E(n̂) =
∑
l,m

aElmYlm(n̂) and B(n̂) =
∑
l,m

aBlmYlm(n̂). (148)

See left panel of figure 14.

• The scalar quantities E and B, completely determine the linear polarization fields.

• The E-mode is curl-free and even under the action of parity. Its polarization vectors are
radial around cold sports (under dense) and tangential around hot spots (over dense).

• The B-mode is the divergence-free field and odd under parity. Its polarization vectors
have vorticity around the under and over dense areas.
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Figure 13: Left: The polarization corresponding to U = V = 0 (a and b), Q = V = 0 (c and d), and Q = U = 0
(e and f). Right: E-mode and B-mode patterns of polarization. The polarization vectors around a cold spot
and hot spot are shown in blue and red respectively.

Figure 14: E- and (delensed) B-mode power spectra for a tensor-to-scalar ratios r = 0.3, and for r = 0.01.
Shown are also the experimental sensitivities for WMAP, Planck and two different realizations of a future
CMB satellite (CMBPol) (EPIC-LC and EPIC-2m).

• The angular power spectra are defined as

CXYl ≡ 1

2l + 1

∑
m

〈aXlmaYlm〉 where X,Y = T,E,B. (149)

The autocorrelations of E- and B-modes, denoted by EE and BB, are presented in the
right panel of figure 14.

• Scalar perturbations create only E-modes and no B-modes. However, vector perturba-
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tions create mainly B-modes.

• Tensor perturbations create both E-modes and B-modes.

Primordial gravitational waves and B-modes have not yet been detected. Recalling that
scalars do not produce B-modes while tensors do, a detection of primordial B-modes is a
smoking gun of primordial gravitational waves, and therefore of inflation.
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