

Recombination

Because of $\mu_{1s} = \mu_p + \mu_e$ the ratio of the number densities becomes

$$\frac{n_{1s}}{n_e n_p} = \left(\frac{m_e k_B T}{2\pi\hbar^2}\right)^{-\frac{3}{2}} e^{\frac{B_1}{k_B T}}$$

with $B_1 = m_p + m_e - m_H = 13.6 \ eV$ the energy of the ground state of Hydrogen.

Since the universe is charge neutral, we have the same amount of electrons and protons $n_e = n_p$.

Wolfgang Hillebrandt and Bruno Leibundgut

29

29

TUM WS19/20 Cosmology 8

Recombination						
	Z	T(K)	T(yrs)	$X_{\Omega_B h^2 = 0.01}$	$X_{\Omega_B h^2 = 0.02}$	$X_{\Omega_B h^2 = 0.03}$
Due to the	1550	4226	202600	0.992	0.984	0.982
	1500	4090	213200	0.976	0.958	0.954
atomic	1450	3954	225900	0.935	0.902	0.878
atomic	1400	3818	239800	0.861	0.815	0.780
transitions in	1350	3681	255200	0.759	0.703	0.659
	1250	3409	290600	0.526	0.360	0.525
hydrogen the	1200	3273	311300	0.409	0.339	0.289
	1150	3136	334600	0.299	0.236	0.194
suppression of	1100	3000	360400	0.205	0.154	0.122
tha lyman a	1050	2864	389600	0.129	0.0928	0.0721
the Lyman G	1000	2728	422600	0.0752	0.0520	0.0396
nhotons leads	950	2591	460500	0.0405	0.0270	0.0203
photons leads	900	2455	503600	0.0210	0.0136	0.0101
to modification	800	2183	611400	0.00662	0.00387	0.00276
	700	1910	761300	0.00319	0.00174	0.00120
of the ionisation	500	1365	977700	0.00203	0.00107	0.000731
for a the se	250	684	3 922 106	0.00147	0.000702	0.000317
fraction	100	275	1 604 107	0.000632	0.000321	0.000216
	50	139	4.535 107	0.000579	0.000294	0.000197
	10	30	4.568 107	0.000537	0.000272	0.000183
TUM WS19/20 Cosmology 8 Wolfgang Hillebrandt and Bruno Leibundaut						38

