Cosmology

TUM WS 2019/2020 Lecture 6

Wolfgang Hillebrandt and Bruno Leibundgut (http://www.eso.org/~bleibund/Cosmology)

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

Thermal history of the universe to the cold accelerating universe

History of the Universe

History of the Universe

Wolfgang Hillebrandt and Bruno Leibundgut

Tum WS19/20 Cosmology 6

Tum VST 9/20 Cosmology 6

Energy and Temperature

Connected through

$$E = k_B T = mc^2 = hv$$

 $(k_B=8.6173\ 10^{-5}\ eV\ K^{-1})$ (c will be dropped, i.e. set to 1 in the following)

chergy (ev)	remperature (K)
1.00E+12	1.1605E+16
1.00E+11	1.1605E+15
1.00E+10	1.1605E+14
1.00E+09	1.1605E+13
1.00E+08	1.1605E+12
1.00E+07	1.1605E+11
1.00E+06	1.1605E+10
1.00E+05	1.1605E+09
1.00E+04	1.1605E+08
1.00E+03	1.1605E+07
1.00E+02	1.1605E+06
1.00E+01	1.1605E+05
1.00E+00	1.1605E+04
1.00E-01	1.1605E+03
1.00E-02	1.1605E+02
1.00E-03	1.1605E+01
1.00E-04	1.1605E+00
1.00E-05	1.1605E-01
1.00E-06	1.1605E-02
1.00E-07	1.1605E-03
1.00E-08	1.1605E-04
1.00E-09	1.1605E-05
1.00E-10	1.1605E-06
1.00E-11	1.1605E-07
1.00E-12	1.1605E-08

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

Thermal History Overview

Event	time t	redshift \boldsymbol{z}	temperature T
Inflation	$10^{-34} \mathrm{\ s\ } (?)$	-	_
Baryogenesis	?	?	?
EW phase transition	$20~\mathrm{ps}$	10^{15}	$100~{\rm GeV}$
QCD phase transition	$20~\mu \mathrm{s}$	10^{12}	$150~\mathrm{MeV}$
Dark matter freeze-out	?	?	?
Neutrino decoupling	1 s	6×10^{9}	$1~{\rm MeV}$
Electron-positron annihilation	6 s	2×10^9	$500~\mathrm{keV}$
Big Bang nucleosynthesis	3 min	4×10^8	$100~{\rm keV}$
Matter-radiation equality	$60~\mathrm{kyr}$	3400	$0.75~\mathrm{eV}$
Recombination	260–380 kyr	1100-1400	$0.26\!\!-\!\!0.33~{\rm eV}$
Photon decoupling	$380~{ m kyr}$	1000-1200	0.23 - 0.28 eV
Reionization	100–400 Myr	11-30	$2.67.0~\mathrm{meV}$
Dark energy-matter equality	9 Gyr	0.4	$0.33~\mathrm{meV}$
Present	13.8 Gvr	0	$0.24~\mathrm{meV}$

(From Daniel Baumann; http://www.damtp.cam.ac.uk/user/ db275/Cosmology/)

Table 3.1: Key events in the thermal history of the universe.

TUM WS19/20 Cosmology 6

Relativistic gas

 For a highly relativistic gas (m<<k_BT) the density and entropy become $\rho(T) = \frac{1}{2}N\sigma_B T^4 \qquad s(T) = \frac{2}{3}N\sigma_B T^3$

$$\rho(T) = \frac{1}{2}N\sigma_B T^4 \qquad s(T) = \frac{2}{3}N\sigma_B T^3$$

with N the number of particles and antiparticles and all spin states (and a faction 7/8 for fermions)

$$t = \sqrt{\frac{3}{16\pi GN\sigma_B}} \frac{1}{T^2} + const.$$

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

Thermal history

Start with a very hot state: $T=10^{11} K \approx 1 Me_{V} >> k_{B}T >> m_{e}$

- photons, electrons and positrons, all neutrinos in thermal equilibrium
 - latter through 4 n e latter

$$N = 2 + \frac{7}{8}(6+4) = \frac{43}{4}$$

• Adding all states $N = 2 + \frac{7}{8}(6+4) = \frac{43}{4}$ • and time $t = \sqrt{\frac{3c^2}{172\pi G\sigma_B}}T^{-2} + const.$

TUM WS19/20 Cosmology 6

Neutrino decoupling

The critical parameter is the ratio between the reaction rate (Γ) and the expansion rate (H). Once the reaction rate is slower than the expansion the equilibrium is lost.

 For the neutrinos, the weak interaction with electrons is critical

 $\Gamma_{v} = n_{e} \sigma_{wk} \approx \left(\frac{k_{B}T}{\hbar}\right)^{3} (\hbar G_{wk} k_{B}T)^{2} = \frac{G_{wk}^{2} (k_{B}T)^{5}}{\hbar}$

here we have electron density n_e and the weak interaction coupling constant Gwk

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

Neutrino decoupling

 Expansion rate is given by the Friedmann equation $H = \sqrt{\frac{G(k_BT)^2}{\hbar^3}}$

which leads to
$$\frac{\Gamma_{\nu}}{H} = G_{\nu k_{0}}^{2} \sqrt{\frac{\hbar}{G}} \left(k_{B}T\right)^{3} \approx \left(\frac{T}{10^{10}K}\right)^{3}$$

 At this temperature the reaction rate falls below the expansion rate and the neutrinos are no longer in thermal equilibrium with the electrons (and photons)

TUM WS19/20 Cosmology 6

Neutrino decoupling

 At this point the neutrinos start free streaming and an adiabatic expansion

$$T_{\nu} \propto a^{-1} = 1 + z$$

- Note that 10¹⁰K corresponds to roughly 1 MeV, i.e. twice the e⁻ mass
- This means that e⁻ and e⁺ can no longer be assumed massless

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

g

Electrons (and positrons)

The entropy density for the photons and electrons and positrons is

$$s(T) = \frac{4\sigma_B T^3}{3} + \frac{4}{T} \int_0^\infty \frac{4\pi p^2 dp}{(2\pi\hbar)^3} \left(\sqrt{p^2 + m^2} + \frac{p^2}{3\sqrt{p^2 + m^2}} \right) \left(e^{\frac{\sqrt{p^2 + m^2}}{k_B T}} + 1 \right)^{-1}$$

- first term is for the photons and the second term for the electrons and positrons
- Since $s(T)a^3 = const.$ and $T_{\nu} \propto a^{-1}$ this means $T_{\nu} \propto T f^{1/3} \left(m_e / k_B T \right)$
 - temperatures for neutrinos and electrons
 - $-f(m_e/k_BT)$ is a function 4akT g up the terms in the equation above $=\frac{4akT}{3}f(m_e/k_BT)$

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

Electrons and Positrons

- For large temperatures $m_e << k_B T$ the neutrinos were still in equilibrium with the electrons and both temperatures were the same so that f(0) reduces to counting the number of forticles = $\frac{11}{4}$ hence $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_f^{1/3} (m_e/k_B T)$
- For late times when the temperature is low $f(\infty) = 1$ and $\frac{T}{T} \rightarrow \left(\frac{11}{4}\right)^{1/3} = 1.401$

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

1

Neutrino temperature today

 In effect the photons were heated by the e⁻ + e⁺ annihilation and the temperature difference today is

$$T_{v} = \frac{T_{0}}{1.401} = \frac{2.275K}{1.401} = 1.945K$$

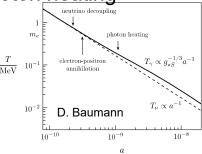
TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

Summary of the temperature evolution

The exact values are

<i>T(K)</i>	T/T_{ν}	t (seconds)
1011	1.000	0
6 1010	1.000	0.0177
$3\ 10^{10}$	1.001	0.101
$2\ 10^{10}$	1.002	0.239
10^{10}	1.008	0.998
6 10 ⁹	1.022	2.86
3 10 ⁹	1.080	12.66
2 109	1.159	33.1
109	1.345	168
3 108	1.401	1980
108	1.401	$1.78 \ 10^4$
107	1.401	1.78 10 ⁶
106	1.401	1.78 10 ⁸


TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

13

Early temperature evolution

 The important events are neutrino decoupling, electron-positron annihilation and photon heating

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

Big Bang Nucleosynthesis

- Relevant interactions
 - Conversions between protons and

$$\begin{array}{ll} \text{neutrons} \\ n+v & \Longrightarrow p+e^- \\ \\ n+e^+ & \Longrightarrow p+\overline{v} \\ \\ n & \Longleftrightarrow p+e^-+\overline{v} \\ \\ Q=m_n-m_p=1.293 MeV \end{array}$$

 The energy transfer is the difference in rest mass between the

TUM WS19/20 Cosmology 6 and Wolfgang Hillebrandt and Bruno Leibundgut

15

Reaction rates

• The reaction rates in thermal equilibrium depend on the temperature $\frac{\lambda(p \to n)}{\lambda(n \to p)} = e^{\frac{Q}{k_B T}}$

and hence the fraction of neutrons and protons is

protons is
$$\frac{X_n}{X_p} = \frac{X_n}{1 - X_n} = e^{\frac{Q}{k_b T}} \quad \text{definition of } X_n \equiv \frac{N_n}{N_n + N_p}$$

• The rates are determined by the weak interactions $\lambda(n \to p) = \lambda(p \to n) \propto (k_B T)^5$

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

Connect to expansion

- In the radiation dominated era the expansion age is $t = \frac{1}{2H}$
- The equilibrium stops when the reaction rate is slower than the expansion age

$$\frac{\lambda}{H} \approx 0.8 \left(\frac{T}{10^{10}K}\right)^3$$

• Above $T = 1.1 \cdot 10^{10} K$ the reactions are still faster than the expansion

$$X_n = \left(1 + e^{\frac{Q}{k_B T}}\right)^{-1}$$

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

1

Evolution of X_n

 Dramatic decrease when the neutron decay starts

$$\tau_n = 885.$$

and the number of neutrons reduces as

$$N_n \propto e^{-\frac{t}{\tau_n}}$$

A fit to the table gives

$$X_N \to 0.1609e^{-\frac{t}{885.7s}}$$

TOV	<i>t</i>	X_n	
T(K)	(seconds)		
1012	0.0001	0.4962	
3 1011	0.0011	0.4875	
1011	0.0099	0.4626	
3 10 ¹⁰	0.1106	0.3798	
10^{10}	1.008	0.2386	
3 10 ⁹	12.67	0.1654	
1.3 109	91.09	0.1458	
1.2 109	110.2	0.1425	
1.1 109	135.1	0.1385	
109	168.1	0.1333	
9 108	212.7	0.1268	
8 108	274.3	0.1182	
7 108	362.6	0.1070	
6 108	496.3	0.0919	
3 108	1980	0.0172	
108	17780	3.07 10-10	

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

Nucleosynthesis

- The free neutrons are bound in atomic nuclei
 - number density of a species i

$$n_i = g_i e^{\frac{\mu_i}{k_B T}} \left(\frac{2\pi m_i k_B T}{h^2} \right)^{\frac{3}{2}} e^{-\frac{m_i}{k_B T}}$$

- μ_i chemical potential, m_i mass of the particle
- chemical potential for rapid reactions

$$\mu_i = Z_i m_p + (A_i - Z_i) m_n$$

 Z_i charge of the nucleus, A_i atomic (mass) number

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

1

Nucleosynthesis

· The mass of the nucleus is

$$m_i = Z_i m_p + (A_i - Z_i) m_n - B_i$$

- $-B_i$ is the binding energy of the nucleus
- Nuclei with the highest binding energy

would in principle form first

However, only
 2-particle reactions
 and only D forms

Nucleus	Binding Energy (MeV)
neutron	1.29
Deuterium D (or ² H)	2.22
Tritium (³ H)	6.92
Helium (³ He)	7.72
Helium (⁴ He)	28.3

TUM WS19/20 Cosmology 6

Wolfgang Hillebrandt and Bruno Leibundgut

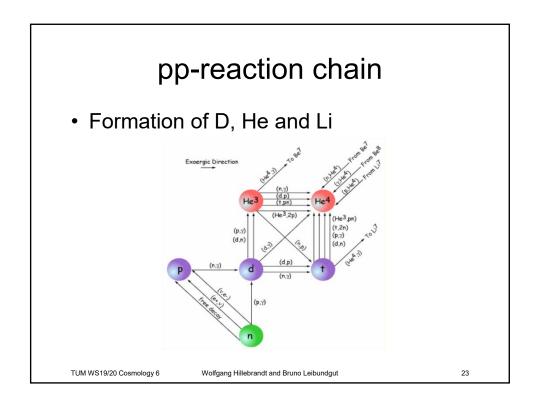
Nucleosynthesis

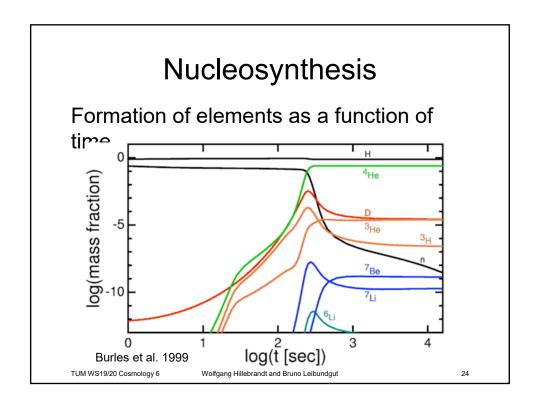
- · D forms first, but it also is dissociated by the photons
- Production depends on the (baryon) density Ω_B $n_N = \frac{3\Omega_B H_0^2 \left(\frac{a_0}{a}\right)^2}{8\pi G m_N}$

Introducing $h = \frac{H}{100 km \ s^{-1} \ Mpc^{-1}}$

· Rate of D production

 $\lambda_D = 2.52 \cdot 10^4 \, \text{s}^{-1} \left(\frac{T}{10^{10} \, \text{K}} \right)^3 X_p \Omega_B h^2$


TUM WS19/20 Cosmology 6


Wolfgang Hillebrandt and Bruno Leibundgut

Nucleosynthesis

- D starts to form at $T \approx 7 \cdot 10^8 K$
- After D production the next nuclei, D, ³H, ³He, ⁴He, ⁶Li, ⁷Li and ⁷Be form quickly
- There are no stable nuclei with A=5 or A=8

TUM WS19/20 Cosmology 6

