
11/15/2019

1

TUM WS19/20 Cosmology 4 Wolfgang Hillebrandt and Bruno Leibundgut 1

Cosmology

TUM WS 2019/2020

Lecture 4
Wolfgang Hillebrandt and Bruno Leibundgut

(http://www.eso.org/~bleibund/Cosmology)
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The reach of Gaia
Parallaxes to a fair fraction of the Milky Way

– galaxy structure
• spiral arms, disk, bulge, halo

– galaxy dynamics

– average distance to the LMC



11/15/2019

2

TUM WS19/20 Cosmology 4 Wolfgang Hillebrandt and Bruno Leibundgut 3

Milky Way

Magellanic Clouds
Large Magellanic Cloud (LMC)
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Large Magellanic Cloud
• Primary calibrator for many methods

– primary Cepheids

– RR Lyrae

– Eclipsing binaries

– SN 1987A
• geometric – light

travel time from 
circumstellar ring

Freedman & Madore 2010

39.8 kpc 57.5 kpc52.543.7
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Eclipsing binaries

• Binary star with the orbital axis perpendicular 
to the line of sight
compare the size of the star 

(from the duration of the eclipses)

to its apparent angle on the sky

(from the surface brightness of the                                    
star; uses Stefan-Boltzmann law)

→ angular size distance 

d(pc) 1.337 105  r(km)

(mas)
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Pietrzynski et al. 2013

Eclipsing binaries

• Binary star with the orbital axis perpendicular 
to the line of sight

excellent distance to the Large 
Magellanic Cloud

(e.g., Pietrzynski et al. 2013)
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SN 1987A as geometric distance 
indicator

• Illumination of the circumstellar ring

– light travel time and ring size give a distance

(need to know the inclination angle)
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SN 1987 - Geometric Distance

• Distance due to illumination of circumstellar
ring from the supernova flash
– require speed of light and inclination angle

Panagia 2003



11/15/2019

5

TUM WS19/20 Cosmology 4 Wolfgang Hillebrandt and Bruno Leibundgut 9

Stepping into the Hubble flow

• Beyond the Large Magellanic Cloud distance 
indicators typically bridge towards the Hubble 
flow
– Planetary Nebulae Luminosity Function

– Globular Clusters

– Blue Supergiant stars

– Cepheid stars

– Masers (geometric)

Sandage & Tammann 1974
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Into the Hubble Flow

• Typically galaxy properties
– Tully-Fisher relation

– Faber-Jackson relation

– Fundamental plane of galaxies

• Other indicators
– Surface Brightness Fluctuations

– Type Ia Supernovae
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Independent anchor
NGC 4258 (Messier 106)

• Nearby active galactic nucleus

NASA, ESA, the Hubble Heritage Team (STScI/AURA), 
and R. Gendler (for the Hubble Heritage Team).
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Water masers in the inner disk of 
NGC 4258

• Nearly perfect Keplerian rotation
0.15&pc&

MIAPP,&28&May&2014&
Miyoshi&et&al.&(1995)&

Herrnstein&et&al.&(1999)&

Almost perfect 
Keplerian rotation 

to ~ 1% 

40&000&Rsch&

Humphreys et al. 2013
(plots from 
Miyoshi et al. 1995
and Herrnstein et al. 1999) 

0.15pc
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Distance to NGC 4258 and H0

• From the maser geometry
7.60±0.23 Mpc (Humphreys et al. 2013)

• Use this to calibrate Cepheids in this galaxy

• with the calibrated Cepheids measure 
galaxies, which had a SN Ia (Riess et al. 
2011

• calibrate SNe Ia

• measure SNe Ia in the Hubble flow
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Tully-Fisher method

• Correlate the rotation 
velocity of a spiral 
galaxy with its mass 
and hence luminosity

)
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Surface brightness fluctuations

• Distant objects appear smaller
• More stars per pixel in a galaxy far, 

far away
• Smoother light distribution, less 

variation from pixel to pixel
• Amplitude of fluctuations 

proportional to distance
• Good to ~100 Mpc, z~0.01
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Courtesy John Tonry
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Type Ia Supernovae
• Very luminous: -19 magnitude at maximum

• Variable, easy to identify, when found

• Rare: only about one SN Ia in a typical galaxy every 100 years

• Can be calibrated by light curve shapes to very good accuracy

• Absorption is an issue, unclear absorption law in distant galaxies, 
possibly local absorption 

• Fairly well understood physical processes, although complicated 
physics (nuclear burning and hydrodynamics)

• Found now frequently and used extensively in large surveys
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Type Ia Supernovae

SN 2007af 

SN 2007sr 

Cfa I 

Cfa I Cfa II LOSS Cfa III/LOSS 

Cfa III/LOSS Calan/Tololo 
LOSS 
Re-calibrated 

Riess
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SN Ia: “standardizable” candles

(B-band light curves; Calan/Tololo sample, Kim et al. 1997)

After calibration: SN Ia are good “standard candles”! 
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Hubble diagrams

• Work mostly with luminosity distances

• Two types
– velocity/redshift vs. distance

• linear in distance

• Hubble constant = slope

– redshift vs. distance modulus
• logarithmic in distance

• Hubble constant = y-axis intercept
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Hubble diagrams

Freedman & Madore 2010
H0 from intersect.
Assumes M=const. (“standard candle”)

DL 
cz

H0

 v

H0

m = 5log10cz + (M - 5log10H0 + 25)
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Classical Hubble diagram
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More recent SN Ia Hubble diagram

(Scolnic et al., 2018)

≈ 1000 
spectroscop. 
confirmed 
type SNe Ia!

Ωm = 0.307±0.012

w = -1.026±0.041

(H0 = 68.0±0.86)
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Early Hubble diagrams
• Attempts of the Hubble diagrams

Hubble (1929) Sandage (1967)
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Distance Ladder

Jacoby et al. 1992
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History of the Hubble Constant 
measurements

• Difficult measurement, depends on many 
steps in the distance ladder and hence was 
improved dramatically with time.
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Intermezzo
Age of the Universe

• Matter-dominated universe has the following 
age

age of the Earth: 4.5⋅109 years

oldest stars: ~1.2⋅1010 years

t0 
2

3H0

H0 (km/s/Mpc) t0 (yr)

500 1.30⋅109

250 2.61⋅109

100 6.52⋅109

80 8.15⋅109

70 9.32⋅109

60 1.09⋅1010

50 1.30⋅1010

30 2.17⋅1010
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Distance ladder

• Minimise number of “rungs” on the ladder 
(“steps” into the universe)

• Ideally find objects in the Hubble flow for 
which the luminosity can be determined 
through physics

• theory of Type Ia supernovae

• Expanding photosphere method of supernovae

• Sunyaev-Zeldovich effect in galaxy clusters

• Baryonic Acoustic Oscillations
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according to Riess 2014
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Distance ladder

Hubble Flow 

5% Anchor: LMC  

3.5% SN Ia hosts,  
Metallicity change 

11% error ____ ____ 

 1% # Modern, distant SNe Ia 

 3% # Modern, local hosts 

4% long to short Period Cepheids 

4.5% Ground to HST 

PAST DISTANCE LADDER (100 Mpc)

3% Anchor: 
NGC4258 

Hubble Flow 

 4 % 
error ____ ____ 

 1% 

 2% 

Calibrator 

NA 

NEW LADDER (100 Mpc) 

Riess
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Distance Ladder measurements

•Hubble Space Telescope Key Project [Freedman et al. 2001]
• H0 = 72 ± 8 km s-1 Mpc-1  (10% uncertainty)
• resolving multi-decade “factor-of-two” controversy

•Carnegie Hubble Program [Freedman et al. 2012]
• H0 = 74.3 ± 2.1 km s-1 Mpc-1 (2.8% uncertainty)

•Carnegie-Chicago Hubble Program [Beaton et al. 2016]
• aim 3% precision in H0 via independent route with

RR Lyrae, the tip of red giant branch, SN Ia

•Supernovae, H0 for the dark energy Equation of State 
(“SH0ES”) project [Riess et al. 2016]
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The SH0ES Distance Ladder

32

[slide material courtesy of Adam Riess]

ladder to reach objects in Hubble flow (vpeculiar << vHubble = H0 d) 
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H0 from SH0ES

[Riess et al. 2016]
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Error propagation in the distance ladder 
(according to Adam Riess)

σ2
H0

= σ2
anchor +σ2

anchor−cephs+
σ2

host−cephs

n
+

σ2
SN

n
+σ2

mag−z+[R2σ2
λ+(R−1)2σ2

V]+[σ2
Z+σ2

PL].

The error is as (more?) important as the answer! 

Geometric 

Link to 
primary 

Tie to 
primary 

Near Far 

Tie to 
secondary 

Sampling 
Hubble flow 

Δ ZP, 2ndary 
& dereddening  

Δ Z * slope 

Δ P * PL slope 

While improving one step don’t forget the others! 

Anatomy of the error budget – distance ladder in 3 steps
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H0: Physical methods

• Sunyaev-Zeldovich effect in galaxy clusters

• Supernovae
– Expanding photosphere method

– Physical calibration of thermonuclear supernovae

• geometric methods 
– Baryonic acoustic oscillations

– Masers

– Gravitational lenses
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Sunyaev-Zeldovich effect

• Compton scattering of CMB photons in the 
hot gas of a galaxy cluster
– temperature dependence

– X-ray Bremsstrahlung surface 
brightness

– depth of cluster can be found by
eliminating ne

– assume that cluster is spherical 
yields DA

T
T

 ne dl

I  n2
e dl
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Type IIP (“core collapse”) supernovae

• High mass stars 
(>8M)

• Extended envelopes     
(still burning)

• Single stars 
• Collapse to neutron 

star or black hole

Crab nebula with pulsar 
(constellation Orion)

Remnant of a supernova 
observed in 1054
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A few observational facts 

> Very bright events:    L ~ 1010 Lsun

>  Fast expanding ejecta:   v ~ 104 km/s   

>  Energies: electromagnetic       ~  1042 J 
kinetic:   ~  1044 J 
neutrinos (SN1987A):  ~ 3·1046 J  

> Progenitor star distroyed (SN 1987A, SN 1993J)   

>  Compact remnant (as far as we  know)
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Expanding  photosphere method

• Measure the increase in 
size of a (type IIP) supernova

• Observed flux depends on 
the surface area

– assume blackbody radiation

(D: distance; Bλ: Planck function)

Image: Kirshner & Kwan 1974
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Image: Schmidt et al. 1994

Expanding photosphere method

• Solve for t0 and D

• together with redshift: H0

Images: Schmidt et al. 1994b
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Expanding photosphere method
Main problem: supernova radiation is not a black 
body!

Origin of BB photons:
thermalisation radius Rth

Photosphere: surface of
last scattering (Rph > Rth)
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Expanding photosphere method
Main problem: supernova radiation is not black body!

Radiation is 
“diluted” in 
the blue and
UV bands!

Corrected for 
by means of  a 
“dilution 
factor” ς.

Dessart & Hillier 2005
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Expanding photosphere method
From fits to models:
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Expanding photosphere method
An early EPM Hubble diagram (16 SNe, dilution as in Eastman et al.)

Schmidt et al. 1994

H0 = 73 ± 6 (stat.) ± 7 (syst.)  [km/s/Mpc]



11/15/2019

23

TUM WS19/20 Cosmology 4 Wolfgang Hillebrandt and Bruno Leibundgut 45

Expanding photosphere method
A more recent EPM Hubble diagram (Gall et al. 2018):
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• Hubble’s law

• Luminosity distance

• Ni-Co decay
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Determining H0 from models of 
thermonuclear supernovae (SNe Ia)
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H0 from the nickel mass

NiNi Mt

F
cz

E

F
cz

L

F
cz

D

cz
H

)(

444
0 







Hubble
law

Luminosity
distance

‘Arnett’s rule’
Ni-Co decay
and rise time

Need bolometric flux at maximum F and the 
redshift z as observables

Stritzinger & Leibundgut (2005)

α: conversion of nickel energy into radiation (L=αENi)
ε(t): energy deposited in the supernova ejecta 
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Assumptions

• Rise time (15-25 days)  about 10% 
uncertainty

• Arnett’s rule
energy input at maximum equals radiated 

energy (i.e. α≈1, ε(tmax) ≈1)

• Nickel mass from models

•  uniquely defines the bolometric peak 
luminosity
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H0 and the Ni mass

•Individual SNe 
follow the M-½

•dependency.

•Problem: 

•Since they have 
individual Ni 
masses it is not 
clear which one to 
apply!
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Determine a lower limit for H0

MPA

W7 1M
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Gravitationally lensed supernova 

Gravitational lensing:

Background star

Sun

Earth 

Star’s image

(courtesy Sherry Suyu, MPA)
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Strong optical lensing

Image credit: P. J. Marshall
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Strong optical lensing

Image Credit: P. J. Marshall

gravitational

Mass “bends”
light and acts 
likes a lens
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54

Gravitational lens

Image credit: P. J. Marshall

Marshall et al. (2007))

HST image: SLACSJ0737+3216
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Strong gravitational lensing

B1608+656
Active galactic nucleus 
(AGN): accretion of material 
onto a supermassive black 
hole

Light emitted from AGN 
changes in time (“flickers”)
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Gravitational lens time delays

[Fassnacht et al. 1999, 2002]
Movie Credits: 
S. H. Suyu, C. D. Fassnacht,

NRAO/AUI/NSF
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Gravitational lens time delays
Time delay:

Time-delay 
distance:

Obtain from 
lens mass 
model

Advantages:
- simple geometry and well-tested physics
- one-step physical measurement of a cosmological distance 

For cosmography, need:
(1) time delays
(2) lens mass model
(3) mass along line of sight
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H0 from 3 strong lenses

[Bonvin, Courbin, Suyu et al. 2017]

H0 ∈ [0,150] km/s/Mpc
Ωm = 1 - ΩΛ ∈ [0,1]
w = -1

H0 with 3.8% precision 
for flat ΛCDM !
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Global solutions
• If all (density) parameters are known H0 can 

be determined from the luminosity distance

• use CMB
– assume 
Ω ≅ 0,Ω ≅ 0
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Riess+16

60

H0: global vs. local

[Riess et al. 2016]

3 Lenses
(H0LiCOW
+COSMOGRAIL)
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61

H0: Summary (as of 2019)

[Riess et al. 2016]

(6 lenses)
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Issues

• Big unresolved issue is dust obscuration
– correction uncertain for other galaxies

• Evolution of the object
– e.g. supernovae different in the past

• Sample contamination by other objects

• Subtleties in the geometry

• Disturbance in the pure Hubble flow
– peculiar velocities
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Local galaxy environment

• Several superclusters around 
the Milky Way

• complicated velocity field 

Tully et al. 2014
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