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Recap Einstein Equations

e Gravity is the dominant force in the universe
- General Relativity

¢ Need the most general form of the metric 2>
transformations between coordinate
systems
— find ‘invariant’ parameters

e Equation of motion for a force-free particle
(¥ = 0) in GR leads to affine connections 2>
Christoffel symbols

e Putting this together with the geometry and
the energy content = Einstein Equations
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Distances

e \We separate the observed distances r(t)
into the expansion factor a(t) and the
fixed part x (called comoving distance)

r(t)=a(t)x

©,0) (1,0) 0.0) (1,0 ©0 0
Comoving - _
Distance alta) =at3)
x=1 Comoving >altz)
Distance
x=1
Time
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Friedmann equation

¢ The equation governing the expansion of
the (flat) universe is

(f) = 0= 22 plt)

e and d|V|d|ng by the Hubble constant Hy

3110 -26 3
—_wWith Pon =——==10"kg/m
with Peri 812G 8

® p(f) includes all energy forms in the
universe
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Curved geometry

e Consider the spatial part
dl* = dx’

¢ This is invariant under translations and
rotations of the coordinate system
di* =dx* +dz*:x*+7° =a’

¢ This is also true for the hyperbolic case
di* =dx* -dz>:x* -7 =a’

e rescale with x’=ax and z’=az
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Curved space

® gives

dI’ =a’[dx’ £d7’];7° =x* =1

e Differentiating z° =17 x gives zdz = FXdx
o i =a|ax « )
L - 1¥x°
* and in general
(xdx)*
] 1- kx?
d Wlth +1 spherical

k=4 -1 hyperspherical
0 flat (Euclidian)

[}

dl* =a*|dx* +k
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Curved space

® The line element becomes 2
ds* = g, dx"dx" = —cldf* +a* ()| dx* +k iXdX) ]

y Elevation

e Consider polar coordinates

L
2 2 2 2 <2 |
dx" =dr +r (dH +sin 6d¢) T~
z
* |leads to
2 242, 2 dr’ 2 2 2 2
ds” =—c"dt”+a (1) ~+r (d@ +sin” 0d¢ )
1-kr
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Robertson Walker metric

e As an observer at the origin of the
coordinate system it is best to use polar

. North Celestial Pole
coordinates 1
. North Pole e
— think of Equalors\?
‘celestial sphere’  [[oumemgyc S Pt
' ST I e Vernal
— reason for right Ecliptic g

South Pole

ascension and
declination as coordinates on the sky

— also longitude and latitude on Earth
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Robertson Walker metric

The line element has angular and radial

components
2

1 — kr2

ds? = —c?dt? + a?(t) + r2d6? + r? sin? 9d¢zl

a*(t)

Yoo = _1;grr = 1= kT‘Z;

Joe = a*()r%; 84 = a*(t)r?sin® 6
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Curved space

e (Going through the same steps again to
calculate the contributions in the Einstein
equations and then determine the
Friedmann equation for curved space

a’?  kc?* 8nG
=—r@)

—+
a? a?
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Cosmological Constant

¢ Einstein Equations

1 8mG
Ruv - EguvR - Aguv = C_4Tuv
¢ Friedmann equation
<a>2 . kc?  8mG 816

Ac? =
2 3 ¢ 3

a
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Gravity in Einstein’s Equations

e Consider an enclosed mass in a sphere
4 4 4
M (x)= ?pof = Tp(t)f(t) = Tp(t)cf(t)f
— here we converted the fixed density in
comoving coordinates first into the density in

the observed coordinate and then replaced
it with the expansion factor

— in principle this resulted in p, = P(t)a’(t)
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Gravity in Einstein’s Equations

e Acceleration of a particle on the surface

of the sphere is
F(1) = d’r  GM(x)  4aG px’
dt* r 3 7
— NOW USe r(r)=a(t)x 10 change to the
expansion factor

.o F() =_4.7'EG O =_4er
at) = » 3 () 3 p(t)a(t)
¢ This is the gravitational part of the field

equations — GR modifies this part
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The Energy-Momentum Tensor

Use the form for the ‘perfect fluid’

oc’ 0 0
0
0

0

T =

S o ©

0 0
p 0
0 P

The energy conservation requires that the
covariant derivative

aT’" , 9T ; c’d
0=T"= T AT i A i o P34 (p+pc)
toxt ot ' dt
c2p+3—(p+ pc?)=0
a
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Energy-Momentum Tensor

e A general formis p = wpc?. w is the
equation of state parameter.

J Inserting this into the Conservation equation
gives ; =-3(1+ w) which integrates to

log(p) = -3(1 + w) loga + const.

¢ Exponentiating yields
p a—3(1+w)
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Expansion and contents

2"d derivative of the scale factor gives the
dynamics of the expansion, i.e.

differentiation of the Friedmann equation
a 447G

v (pc® +3p)

a C

— expect only deceleration (& < 0), since
density (p) and pressure (p) are positive

— acceleration requires (pc? + 3p) < 0
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Light ray coming towards us

e No angular dependence, hence

dx
dt = ta(t) ——
¢ tal )\/1 — kx?
¢ and integrated

f" dx S0
S=a = as3(x
0o V1 — kx?

e with

arcsin(x) k=1
S(x)=<x k=0

arcsinh(x) k=-1
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Strange consequences

o k=1
— closed universe

— distances increase and then decrease again
with increasing x

e k=0
— ‘critical’ universe
— expanding forever
® k=-1
— Open universe
— expands forever
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Horizon

e Consider the causally connected region
in the universe

— distance travelled by light since t=0

— (remember dx = cdt/a)

= [
- Calt) .
— this is the comoving distance for the horizon

around every point in the universe
— this is also called the conformal time
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Redshift

e For two different times we get
dr,  dr,

a(q)_-a(g)
— i.e. the time scales with the scale parameter

e |f the time intervals df are interpreted as

oscillation periods, e.g. of a photon, then
dy, v, a(t) 1
¢ with z as the redshift between the two

times

TUM WS19/20 Cosmology 2 Wolfgang Hillebrandt and Bruno Leibundgut 21

21

Redshift

¢ Redshift is directly related to the ratio of
the scales between emission and
absorption of a photon

-

L

¢ This is remarkably simple as a
measurement in a spectrum tells the
scale changes
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Distances

e Different methods to measure distances

— Luminosity distance
l

= 41rLD2 ;L observed brightness; L emitted luminosity; D distance

— The distance is the comoving distance x,
times the scale factor at the time of
observation (for us ‘today’) a(t,)

D = x;a(t,)
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Luminosity Distances

— The rate of the photons arrivals is reduced

by a factor &2 — L and the
a(ty) 1+z

energy of the photons (E=h) is also
reduced by a factor /+z (remember
luminosity L is energy per time)

L
[ =
4mtx2a?(to)(1 + z)2

— Set D, = x;a(ty)(1 + z) and we recover the

L
7D}

equation for the luminosity distance | = ”
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Angular size distance

— A different method is to measure the angle

of a distant object of known size D, = é
(here L is the size of the object; 8 the observed angle)
— Inspection of the metric (here we only need

the gy part), which gives | = x;a(t,)6

and inserting this in the equation above

a(ty) _ 1

yields D, = x;a(t;) and with o T

we find 2L = (1 + z)?
D
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Distances

¢ This is quite remarkable for high redshifts

— the physical distances differ for the same
redshift!

— an object for which we could measure the
angular size distance and the luminosity
distance would give a different number of
kilometres!

— a direct consequence of general relativity
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Friedmann equation (last time)

¢ \We can put the various densities into the

N . .2
Friedmann equation < = H? = %p(t)

8nG k?c?
= 3 (Pmatter + Praa + Pvac) — aZ

¢ \We can define the critical density for a flat

. 2 1}
universe (k = 0) p.ric = —— and we can define

the ratio to the critical density Q = pp
crit
e Most compact form of Friedmann equation
. kc?
1= Qmatter + Qraa + Qpac + Qe With Q, = — #
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Matter

® The pressure in matter is negligible
compared to the mass content (think

mc?) and hence w =0

¢ Thus pmatter ma_:;

* |nserting this in the Friedmann equation
for a flat universe (k=0) provides the time
dependence of the sczzale factor

a(t)«t?
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Radiation

¢ Radiation decreases with the volume
(i.e. number of photons), but has one
additional factor due to the redshift o = 3
and hence p,,, xa™

¢ The time dependence here is now
a(t) « Ji
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Vacuum energy
® A special case is 0, ,.um = CONSL.
¢ |n this case the density is associated to
the vacuum
e Now the scale factor grows exponentially
a(t)ce™

30
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Dependence on scale parameter

¢ For the different contents there were
different dependencies for the scale

parameter

-3 -
pmatter xa p rad xa

e Combining this with the critical densities
we can write the density as

3 4
EL (@) +Q (ﬁ) +Q
8.7'[ G matter a rad a A

Y p, =const.

o

and the Friedmann equation
H? = Hi[Q,,, (1+2) +Q,,(1+2)' +Q, +Q,(1+2)°]
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Lookback Time

god_dal_ .. [a@®) =i1n(L)=__l%
a, dt \l+z) l+zdt

¢ |nserting into the Friedmann equation we

find the equation for ththzime interval
dt=

. Hy(+ ;)\/Qmmm(l +2)+Q (1+2)'+Q, +Q,(1+2)’
and integrating

1 pa dz
o=t = _fo 3 4 2
Hy "% (14 23 Qe 1420 +Q,,(142)* +Q, +Q,(142)

e Age in a matter dominated universe

1 p» dz 2 1
— — t = | —— == byt = ——
(t1=0, Z=00) fonuner i, J, PP and o 2
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Distances (last time)

¢ \We can now also express the luminosity
distance D, = agx;(1 + z) in these terms
— from the metric for a light ray coming towards

ar _ V17kX7\yhich turns into
cdt a(t)

a __dx
T s (1+2z)dt

— after integration we have (using dt from above)

dz

us we have

x1 dx _le
¢ 70 Vi-kx 0 HoyQmatter(1+2)3+Qrqa(1+2) T+ 0 +Qx (1+2)*

arcsin(x;VE k>0

. . VE
— solutions of the left side are «x!x, k=0
arcsinh(x;V=k) k<0

-k
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Luminosity Distance

e Putting this together with the appropriate
trigonometric functions gives

_ _ c(+2) ez dz’
Dy = aox1(1+2) = Ho/[Qk S( 1] f" VOQmatter(1+2')*+Qrqa(1+2")* +QA+Qp (1+27) )

sin(y) k>0

with sg) =1y k=0
sinh(y) k<0

¢ \We now have the luminosity distance as
a function of today’s measurements (H,
('s) and the redshift z
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