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Recap Einstein Equations

• Gravity is the dominant force in the universe 
à General Relativity

• Need the most general form of the metric à
transformations between coordinate 
systems
– find ‘invariant’ parameters

• Equation of motion for a force-free particle 
(𝑥̈ = 0)  in GR leads to affine connections à
Christoffel symbols

• Putting this together with the geometry and 
the energy content à Einstein Equations

2



10/24/19

2

TUM WS19/20 Cosmology 2 Wolfgang Hillebrandt and Bruno Leibundgut 3

3

TUM WS19/20 Cosmology 2 Wolfgang Hillebrandt and Bruno Leibundgut 4

Distances

• We separate the observed distances r(t) 
into the expansion factor a(t) and the 
fixed part x (called comoving distance)

r(t) = a(t)x

x

x
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Friedmann equation

• The equation governing the expansion of 
the (flat) universe is

• and dividing by the Hubble constant H0

– with

• ρ(t) includes all energy forms in the 
universe
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≡ H 2 (t) = 8πG
3

ρ(t)

ρcrit =
3H0

2

8πG
≈10−26kg /m3

H 2

H0
2 =

ρ
ρcrit

≡Ω
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Curved geometry

• Consider the spatial part

• This is invariant under translations and 
rotations of the coordinate system

• This is also true for the hyperbolic case

• rescale with x’=ax and z’=az

dl2 = dx2

dl2 = dx2 + dz2;x2 + z2 = a2

dl2 = dx2 − dz2;x2 − z2 = a2
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Curved space

• gives

• Differentiating                gives
•
• and in general

• with 

dl2 = a2[dx2 ± dz2 ];z2 ± x2 =1
z2 =1∓ x2 zdz = ∓xdx

dl2 = a2 dx2 ± (xdx)
2

1∓ x2
!
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dl2 = a2 dx2 + k (xdx)
2

1− kx2
"
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k =
+1             spherical
−1    hyperspherical
0     flat (Euclidian)
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Curved space

• The line element becomes

• Consider polar coordinates

• leads to

ds2 = gµνdx
µdxν = −c2dt2 + a2 (t) dx2 + k (xdx)

2

1− kx2
"

#
$

%

&
'

dx2 = dr2 + r2 dθ 2 + sin2θdφ( )

ds2 = −c2dt2 + a2 (t) dr2

1− kr2
+ r2 dθ 2 + sin2θdφ 2( )

"

#
$

%

&
'

8



10/24/19

5

TUM WS19/20 Cosmology 2 Wolfgang Hillebrandt and Bruno Leibundgut 9

Robertson Walker metric

• As an observer at the origin of the 
coordinate system it is best to use polar 
coordinates
– think of 

‘celestial sphere’

– reason for right 
ascension and 
declination as coordinates on the sky

– also longitude and latitude on Earth
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Robertson Walker metric

The line element has angular and radial 
components

𝑑𝑠' = −𝑐'𝑑𝑡' + 𝑎' 𝑡
𝑑𝑟'

1 − 𝑘𝑟' + 𝑟
'𝑑𝜃' + 𝑟' sin' 𝜃𝑑𝜙'

𝑔66 = −1; 𝑔88 =
𝑎' 𝑡
1 − 𝑘𝑟'

;

𝑔99 = 𝑎' 𝑡 𝑟'; g;; = 𝑎' 𝑡 𝑟' sin' 𝜃

θ

Φ
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Curved space

• Going through the same steps again to 
calculate the contributions in the Einstein 
equations and then determine the 
Friedmann equation for curved space

𝑎̇'

𝑎'
+
𝑘𝑐'

𝑎'
=
8𝜋𝐺
3

𝜌(𝑡)
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Cosmological Constant

• Einstein Equations

𝑅EF −
1
2
𝑔EF𝑅 − Λ𝑔EF =

8𝜋𝐺
𝑐I

𝑇EF

• Friedmann equation
𝑎̇
𝑎

'
+
𝑘𝑐'

𝑎' −
8𝜋𝐺
3 Λ𝑐' =

8𝜋𝐺
3 𝜌
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Gravity in Einstein’s Equations

• Consider an enclosed mass in a sphere

– here we converted the fixed density in 
comoving coordinates first into the density in 
the observed coordinate and then replaced 
it with the expansion factor

– in principle this resulted in 

M (x) = 4π
3
ρ0x

3 =
4π
3
ρ(t)r3(t) = 4π

3
ρ(t)a3(t)x3

ρ0 = ρ(t)a
3(t)
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Gravity in Einstein’s Equations

• Acceleration of a particle on the surface 
of the sphere is 

– now use                to change to the 
expansion factor

• This is the gravitational part of the field 
equations – GR modifies this part

!!r(t) = d
2r
dt2

= −
GM (x)
r2

= −
4πG
3

ρ0x
3

r2
r(t) = a(t)x

!!a(t) = !!r(t)
x

= −
4πG
3

ρ0
a2 t( )

= −
4πG
3

ρ(t)a(t)
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The Energy-Momentum Tensor

Use the form for the ‘perfect fluid’

The energy conservation requires that the 
covariant derivative

T µν =

ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

!

"

#
#
#
##

$

%

&
&
&
&&

0 = T µν
;µ =

∂T 0µ

∂xµ
+Γ0µνT

νµ +Γµ
µνT

0ν =
∂T 00

∂t
+Γ0ij +Γ

i
i0T

00 =
c2dρ
dt

+3 !a
a
(p+ ρc2 )

c2 !ρ +3 !a
a
(p+ ρc2 ) = 0
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Energy-Momentum Tensor

• A general form is 𝑝 = 𝜔𝜌𝑐'. 𝜔 is the 
equation of state parameter.

• Inserting this into the conservation equation 
gives Ṁ

M
= −3 1 + 𝜔 Ṅ

N
which integrates to 

log 𝜌 = −3 1 + 𝜔 log 𝑎 + 𝑐𝑜𝑛𝑠𝑡.
• Exponentiating yields

𝜌 ∝ 𝑎UV WXY
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Expansion and contents

2nd derivative of the scale factor gives the 
dynamics of the expansion, i.e. 
differentiation of the Friedmann equation

– expect only deceleration (ä < 0), since 
density (𝜌) and pressure (𝑝) are positive

– acceleration requires (𝜌𝑐2 + 3𝑝) < 0

!!a
a
= −

4πG
3c2

(ρc2 +3p)
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Light ray coming towards us

• No angular dependence, hence

𝑐𝑑𝑡 = ±𝑎(𝑡)
𝑑𝑥

1 − 𝑘𝑥'

• and integrated
𝑠 = 𝑎]

6

^ 𝑑𝑥
1 − 𝑘𝑥'

= 𝑎𝑆(𝑥)

• with 

𝑆 𝑥 = `
arcsin 𝑥 𝑘 = 1
𝑥 𝑘 = 0
arcsinh 𝑥 𝑘 = −1

18
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Strange consequences

• k=1
– closed universe
– distances increase and then decrease again 

with increasing 𝑥
• k=0

– ‘critical’ universe
– expanding forever

• k=-1
– open universe
– expands forever

19
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Horizon

• Consider the causally connected region 
in the universe
– distance travelled by light since t=0 

– (remember 𝑑𝑥 = 𝑐𝑑𝑡/𝑎)

– this is the comoving distance for the horizon 
around every point in the universe

– this is also called the conformal time

η =
cdt
a(t)0

t
∫

20
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Redshift

• For two different times we get

– i.e. the time scales with the scale parameter

• If the time intervals dt are interpreted as 
oscillation periods, e.g. of a photon, then

• with z as the redshift between the two 
times

dt1
a(t1)

=
dt2
a t2( )

dt1
dt2

=
ν2
ν1

=
a(t1)
a(t2 )

=
1
1+ z

21
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Redshift

• Redshift is directly related to the ratio of 
the scales between emission and 
absorption of a photon

• This is remarkably simple as a 
measurement in a spectrum tells the 
scale changes

22
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Distances

• Different methods to measure distances
– Luminosity distance

𝑙 =
𝐿

4𝜋𝐷'
; 𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠; 𝐿 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦; 𝐷 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

– The distance is the comoving distance 𝑥1
times the scale factor at the time of 
observation (for us ‘today’) 𝑎(𝑡0)

𝐷 = 𝑥1𝑎(𝑡0)

23
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Luminosity Distances
– The rate of the photons arrivals is reduced 

by a factor N rs
N rt

= W
WXu and the 

energy of the photons (E=hν) is also 
reduced by a factor 1+z (remember 
luminosity L is energy per time)

𝑙 =
𝐿

4𝜋𝑥W'𝑎' 𝑡6 1 + 𝑧 '

– Set 𝐷w = 𝑥W𝑎 𝑡6 1 + 𝑧 and we recover the 

equation for the luminosity distance 𝑙 = w
Ixyz

{

24
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Angular size distance

– A different method is to measure the angle 

of a distant object of known size 𝐷| =
}
9

(here 𝑙 is the size of the object; 𝜃 the observed angle)

– Inspection of the metric (here we only need 
the gθθ part), which gives 𝑙 = 𝑥W𝑎 𝑡W 𝜃
and inserting this in the equation above 

yields 𝐷| = 𝑥W𝑎 𝑡W and with N rs
N rt

= W
WXu

we find  
yz
y~
= 1 + 𝑧 '

.
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Distances

• This is quite remarkable for high redshifts
– the physical distances differ for the same 

redshift!
– an object for which we could measure the 

angular size distance and the luminosity 
distance would give a different number of 
kilometres!

– a direct consequence of general relativity

26
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Friedmann equation (last time)
• We can put the various densities into the 

Friedmann equation Ṅ
{

N{
= 𝐻' = �x�

V
𝜌 𝑡

=
8𝜋𝐺
3

𝜌�Nrr�8 + 𝜌8N� + 𝜌�N� −
𝑘'𝑐'

𝑎'
• We can define the critical density for a flat 

universe (𝑘 = 0) 𝜌�8�r =
V�{

Ix�
and we can define 

the ratio to the critical density Ω = M
M����

• Most compact form of Friedmann equation 
1 = Ω�Nrr�8 + Ω8N� + Ω�N� + Ω� with Ω� = − ��{

N{�{

27
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Matter

• The pressure in matter is negligible 
compared to the mass content (think 
mc2) and hence 

• Thus 
• Inserting this in the Friedmann equation 

for a flat universe (k=0) provides the time 
dependence of the scale factor

ρmatter ∝ a
−3

a(t)∝ t
2
3

ω = 0

28
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Radiation

• Radiation decreases with the volume 
(i.e. number of photons), but has one 
additional factor due to the redshift 
and hence

• The time dependence here is now 

ρrad ∝ a
−4

a(t)∝ t

ω =
1
3

29
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Vacuum energy

• A special case is
• In this case the density is associated to 

the vacuum
• Now the scale factor grows exponentially 

ρvacuum = const.

a(t)∝ eHt

30
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Dependence on scale parameter 
• For the different contents there were 

different dependencies for the scale 
parameter

• Combining this with the critical densities 
we can write the density as

and the Friedmann equation

ρmatter ∝ a
−3 ρrad ∝ a

−4 ρΛ = const.

ρ =
3H0

2

8πG
Ωmatter

a0
a

"

#
$

%

&
'
3

+Ωrad
a0
a

"

#
$

%

&
'
4

+ΩΛ

)

*
+
+

,

-
.
.

H 2 = H0
2 Ωmatter (1+ z)

3 +Ωrad (1+ z)
4 +ΩΛ +Ωk (1+ z)

2#$ %&
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Lookback Time
• Consider

• Inserting into the Friedmann equation we 
find the equation for the time interval

and integrating

• Age in a matter dominated universe 
(t1=0, z=∞)                               and 

H =
!a
a
=
da
dt
1
a
= dt ln a(t)

a0

!

"
#

$

%
&=

1
dt
ln 1
1+ z
!

"
#

$

%
&=

−1
1+ z

dz
dt

dt = −dz
H0 (1+ z) Ωmatter (1+ z)

3 +Ωrad (1+ z)
4 +ΩΛ +Ωk (1+ z)

2

t0 − t1 =
1
H0

dz
(1+ z) Ωmatter (1+ z)

3 +Ωrad (1+ z)
4 +ΩΛ +Ωk (1+ z)

20

z1∫

t0,matter =
1
H0

dz

(1+ z)
5
2
=
2
3H0

0

∞

∫ t0,rad =
1
2H0

32
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Distances (last time)
• We can now also express the luminosity 

distance 𝐷w = 𝑎6𝑥W 1 + 𝑧 in these terms
– from the metric for a light ray coming towards 

us we have �8��r =
WU�^{

N r which turns into 
�t
�

�^
WU�^{

= 1 + 𝑧 𝑑𝑡

– after integration we have (using 𝑑𝑡 from above) 
Nt
� ∫6

^s �^
WU�^{

=∫6
us �u

�t ������� WXu �X���� WXu �X��X�� WXu {

– solutions of the left side are Nt
�
×

������ ^s �
�

𝑘 > 0
𝑥W 𝑘 = 0
������¡ ^s U�

U�
𝑘 < 0
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Luminosity Distance

• Putting this together with the appropriate 
trigonometric functions gives
Dw = 𝑎6𝑥W 1 + 𝑧 = � WXu

�t ��
𝑆 Ω� ∫6

u �u£

������� WXu£ �X���� WXu£ �X��X�� WXu£ {

with 𝑆 𝑦 = ¤
sin 𝑦 𝑘 > 0
𝑦 𝑘 = 0
sinh 𝑦 𝑘 < 0

• We now have the luminosity distance as 
a function of today’s measurements (𝐻0, 
Ω’𝑠) and the redshift 𝑧
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