Cosmology

TUM WS 2016/2017
Lecture 2
Wolfgang Hillebrandt and Bruno Leibundgut
http://www.eso.org/~bleibund/Cosmology/

1

Recap Einstein Equations

- Gravity is the dominant force in the universe \rightarrow General Relativity
- Need the most general form of the metric \rightarrow transformations between coordinate systems
- find 'invariant' parameters
- Equation of motion for a force-free particle ($\ddot{x}=0$) in GR leads to affine connections \rightarrow Christoffel symbols
- Putting this together with the geometry and the energy content \rightarrow Einstein Equations

3

Distances

- We separate the observed distances $r(t)$ into the expansion factor $a(t)$ and the fixed part x (called comoving distance)

$$
r(t)=a(t) x
$$

Friedmann equation

- The equation governing the expansion of the (flat) universe is

$$
\left(\frac{\dot{a}}{a}\right)^{2} \equiv H^{2}(t)=\frac{8 \pi G}{3} \rho(t)
$$

- and dividing by the Hubble constant H_{0}

$$
\frac{H^{2}}{H_{0}^{2}}=\frac{\rho}{\rho_{\text {crit }}} \equiv \Omega
$$

- with $\rho_{\text {crit }}=\frac{3 H_{0}^{2}}{8 \pi G} \approx 10^{-26} \mathrm{~kg} / \mathrm{m}^{3}$
- $\rho(t)$ includes all energy forms in the universe

5

Curved geometry

- Consider the spatial part

$$
d l^{2}=d \mathbf{x}^{2}
$$

- This is invariant under translations and rotations of the coordinate system $d l^{2}=d \mathbf{x}^{2}+d z^{2} ; \mathbf{x}^{2}+z^{2}=a^{2}$
- This is also true for the hyperbolic case $d l^{2}=d \mathbf{x}^{2}-d z^{2} ; \mathbf{x}^{2}-z^{2}=a^{2}$
- rescale with $\boldsymbol{x}^{\prime}=a x$ and $z^{\prime}=a z$

Curved space

- gives

$$
d l^{2}=a^{2}\left[d \mathbf{x}^{2} \pm d z^{2}\right] ; z^{2} \pm \mathbf{x}^{2}=1
$$

- Differentiating $z^{2}=1 \mp \mathbf{x}^{2}$ gives $z d z=\mp \mathbf{x} d \mathbf{x}$
- $d l^{2}=a^{2}\left[d \mathbf{x}^{2} \pm \frac{(\mathbf{x} d \mathbf{x})^{2}}{1 \mp \mathbf{x}^{2}}\right]$
- and in general
$d l^{2}=a^{2}\left[d \mathbf{x}^{2}+k \frac{(\mathbf{x} d \mathbf{x})^{2}}{1-k \mathbf{x}^{2}}\right]$
- With $k=\left\{\begin{array}{lr}+1 & \text { spherical } \\ -1 & \text { hyperspherical } \\ 0 & \text { flat (Euclidian) }\end{array}\right.$

Curved space

- The line element becomes
$d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-c^{2} d t^{2}+a^{2}(t)\left[d \mathbf{x}^{2}+k \frac{(\mathbf{x} d \mathbf{x})^{2}}{1-k \mathbf{x}^{2}}\right]$
- Consider polar coordinates

$$
d \mathbf{x}^{2}=d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi\right)
$$

- leads to

$$
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

Robertson Walker metric

- As an observer at the origin of the coordinate system it is best to use polar coordinates
- think of
'celestial sphere'
- reason for right ascension and

declination as coordinates on the sky
- also longitude and latitude on Earth

9

Robertson Walker metric

The line element has angular and radial components

$$
\begin{aligned}
& d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right] \\
& g_{00}=-1 ; g_{r r}=\frac{a^{2}(t)}{1-k r^{2}} ; \\
& g_{\theta \theta}=a^{2}(t) r^{2} ; \mathrm{g}_{\phi \phi}=a^{2}(t) r^{2} \sin ^{2} \theta
\end{aligned}
$$

Curved space

- Going through the same steps again to calculate the contributions in the Einstein equations and then determine the Friedmann equation for curved space

$$
\frac{\dot{a}^{2}}{a^{2}}+\frac{k c^{2}}{a^{2}}=\frac{8 \pi G}{3} \rho(t)
$$

Cosmological Constant

- Einstein Equations

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R-\Lambda g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

- Friedmann equation

$$
\left(\frac{\dot{a}}{a}\right)^{2}+\frac{k c^{2}}{a^{2}}-\frac{8 \pi G}{3} \Lambda c^{2}=\frac{8 \pi G}{3} \rho
$$

Gravity in Einstein's Equations

- Consider an enclosed mass in a sphere

$$
M(x)=\frac{4 \pi}{3} \rho_{0} x^{3}=\frac{4 \pi}{3} \rho(t) r^{3}(t)=\frac{4 \pi}{3} \rho(t) a^{3}(t) x^{3}
$$

- here we converted the fixed density in comoving coordinates first into the density in the observed coordinate and then replaced it with the expansion factor
- in principle this resulted in $\rho_{0}=\rho(t) a^{3}(t)$

Gravity in Einstein's Equations

- Acceleration of a particle on the surface of the sphere is

$$
\ddot{r}(t)=\frac{d^{2} r}{d t^{2}}=-\frac{G M(x)}{r^{2}}=-\frac{4 \pi G}{3} \frac{\rho_{0} x^{3}}{r^{2}}
$$

- now use $r(t)=a(t) x$ to change to the expansion factor

$$
\ddot{a}(t)=\frac{\ddot{r}(t)}{x}=-\frac{4 \pi G}{3} \frac{\rho_{0}}{a^{2}(t)}=-\frac{4 \pi G}{3} \rho(t) a(t)
$$

- This is the gravitational part of the field equations - GR modifies this part

The Energy-Momentum Tensor

Use the form for the 'perfect fluid'

$$
T^{\mu N}=\left(\begin{array}{llll}
\rho c^{2} & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)
$$

The energy conservation requires that the covariant derivative

$$
\begin{gathered}
0=T_{i \mu}^{\mu \nu}=\frac{\partial T^{0 \mu}}{\partial x^{\mu}}+\Gamma_{\mu \nu}^{0} T^{v \mu}+\Gamma_{\mu \nu}^{\mu} T^{0 \nu}=\frac{\partial T^{00}}{\partial t}+\Gamma_{i j}^{0}+\Gamma_{i 0}^{i} T^{00}=\frac{c^{2} d \rho}{d t}+3 \frac{\dot{a}}{a}\left(p+\rho c^{2}\right) \\
c^{2} \dot{\rho}+3 \frac{\dot{a}}{a}\left(p+\rho c^{2}\right)=0
\end{gathered}
$$

Energy-Momentum Tensor

- A general form is $p=\omega \rho c^{2}$. ω is the equation of state parameter.
- Inserting this into the conservation equation gives $\frac{\dot{\rho}}{\rho}=-3(1+\omega) \frac{\dot{a}}{a}$ which integrates to $\log (\rho)=-3(1+\omega) \log a+$ const .
- Exponentiating yields

$$
\rho \propto a^{-3(1+\omega)}
$$

Expansion and contents

$2^{\text {nd }}$ derivative of the scale factor gives the dynamics of the expansion, i.e.
differentiation of the Friedmann equation

$$
\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3 c^{2}}\left(\rho c^{2}+3 p\right)
$$

- expect only deceleration (ä < 0), since density (ρ) and pressure (p) are positive
- acceleration requires $\left(\rho c^{2}+3 p\right)<0$

Light ray coming towards us

- No angular dependence, hence

$$
c d t= \pm a(t) \frac{d x}{\sqrt{1-k x^{2}}}
$$

- and integrated

$$
s=a \int_{0}^{x} \frac{d x}{\sqrt{1-k x^{2}}}=a S(x)
$$

- with

$$
S(x)=\left\{\begin{array}{lr}
\arcsin (x) & k=1 \\
x & k=0 \\
\operatorname{arcsinh}(x) & k=-1
\end{array}\right.
$$

Strange consequences

- $k=1$
- closed universe
- distances increase and then decrease again with increasing x
- $\mathrm{k}=0$
- 'critical' universe
- expanding forever
- $\mathrm{k}=-1$
- open universe
- expands forever

Horizon

- Consider the causally connected region in the universe
- distance travelled by light since $\mathrm{t}=0$
- (remember $d x=c d t / a)$

$$
\eta=\int_{0}^{t} \frac{c d t}{a(t)}
$$

- this is the comoving distance for the horizon around every point in the universe
- this is also called the conformal time

Redshift

- For two different times we get

$$
\frac{d t_{1}}{a\left(t_{1}\right)}=\frac{d t_{2}}{a\left(t_{2}\right)}
$$

- i.e. the time scales with the scale parameter
- If the time intervals $d t$ are interpreted as oscillation periods, e.g. of a photon, then

$$
\frac{d t_{1}}{d t_{2}}=\frac{v_{2}}{v_{1}}=\frac{a\left(t_{1}\right)}{a\left(t_{2}\right)}=\frac{1}{1+z}
$$

- with z as the redshift between the two times

Redshift

- Redshift is directly related to the ratio of the scales between emission and absorption of a photon

- This is remarkably simple as a measurement in a spectrum tells the scale changes

Distances

- Different methods to measure distances
- Luminosity distance
$l=\frac{L}{4 \pi D^{2}} ; l$ observed brightness; L emitted luminosity; D distance
- The distance is the comoving distance x_{1} times the scale factor at the time of observation (for us 'today') $a\left(t_{0}\right)$
$D=x_{1} a\left(t_{0}\right)$

Luminosity Distances

- The rate of the photons arrivals is reduced by a factor $\frac{a\left(t_{1}\right)}{a\left(t_{0}\right)}=\frac{1}{1+z}$ and the energy of the photons ($E=h \boldsymbol{v}$) is also reduced by a factor $1+z$ (remember luminosity L is energy per time)

$$
l=\frac{L}{4 \pi x_{1}^{2} a^{2}\left(t_{0}\right)(1+z)^{2}}
$$

- Set $D_{L}=x_{1} a\left(t_{0}\right)(1+z)$ and we recover the equation for the luminosity distance $l=\frac{L}{4 \pi D_{L}^{2}}$

Angular size distance

- A different method is to measure the angle of a distant object of known size $D_{A}=\frac{l}{\theta}$
(here l is the size of the object; θ the observed angle)
- Inspection of the metric (here we only need the $g_{\theta \theta}$ part), which gives $l=x_{1} a\left(t_{1}\right) \theta$ and inserting this in the equation above yields $D_{A}=x_{1} a\left(t_{1}\right)$ and with $\frac{a\left(t_{1}\right)}{a\left(t_{0}\right)}=\frac{1}{1+z}$ we find $\frac{D_{L}}{D_{A}}=(1+z)^{2}$.

Distances

- This is quite remarkable for high redshifts
- the physical distances differ for the same redshift!
- an object for which we could measure the angular size distance and the luminosity distance would give a different number of kilometres!
- a direct consequence of general relativity

Friedmann equation (last time)

- We can put the various densities into the Friedmann equation $\frac{\dot{a}^{2}}{a^{2}}=H^{2}=\frac{8 \pi G}{3} \rho(t)$

$$
=\frac{8 \pi G}{3}\left(\rho_{\text {matter }}+\rho_{\text {rad }}+\rho_{v a c}\right)-\frac{k^{2} c^{2}}{a^{2}}
$$

- We can define the critical density for a flat universe $(k=0) \rho_{\text {crit }}=\frac{3 H^{2}}{4 \pi G}$ and we can define the ratio to the critical density $\Omega=\frac{\rho}{\rho_{\text {crit }}}$
- Most compact form of Friedmann equation $1=\Omega_{\text {matter }}+\Omega_{\text {rad }}+\Omega_{\text {vac }}+\Omega_{k}$ with $\Omega_{k}=-\frac{k c^{2}}{a^{2} H^{2}}$

Matter

- The pressure in matter is negligible compared to the mass content (think $m c^{2}$) and hence $\omega=0$
- Thus $\rho_{\text {matter }} \propto a^{-3}$
- Inserting this in the Friedmann equation for a flat universe ($k=0$) provides the time dependence of the scale factor

$$
a(t) \propto t^{\frac{2}{3}}
$$

Radiation

- Radiation decreases with the volume (i.e. number of photons), but has one additional factor due to the redshift $\omega=\frac{1}{3}$ and hence $\rho_{\text {rad }} \propto a^{-4}$
- The time dependence here is now

$$
a(t) \propto \sqrt{t}
$$

Vacuum energy

- A special case is $\rho_{\text {vacuum }}=$ const .
- In this case the density is associated to the vacuum
- Now the scale factor grows exponentially

$$
a(t) \propto e^{H t}
$$

Dependence on scale parameter

- For the different contents there were different dependencies for the scale parameter

$$
\rho_{\text {matter }} \propto a^{-3} \quad \rho_{r a d} \propto a^{-4} \quad \rho_{\Lambda}=\text { const } .
$$

- Combining this with the critical densities we can write the density as

$$
\rho=\frac{3 H_{0}^{2}}{8 \pi G}\left[\Omega_{\text {mater }}\left(\frac{a_{0}}{a}\right)^{3}+\Omega_{\text {rad }}\left(\frac{a_{0}}{a}\right)^{4}+\Omega_{\Lambda}\right]
$$

and the Friedmann equation
$H^{2}=H_{0}^{2}\left[\Omega_{\text {mater }}(1+z)^{3}+\Omega_{\text {rad }}(1+z)^{4}+\Omega_{\Lambda}+\Omega_{k}(1+z)^{2}\right]$

Lookback Time

- Consider

$$
H=\frac{\dot{a}}{a}=\frac{d a}{d t} \frac{1}{a}=d t \ln \left(\frac{a(t)}{a_{0}}\right)=\frac{1}{d t} \ln \left(\frac{1}{1+z}\right)=\frac{-1}{1+z} \frac{d z}{d t}
$$

- Inserting into the Friedmann equation we find the equation for the time interval

$$
d t=\frac{-d z}{H_{0}(1+z) \sqrt{\Omega_{\text {mater }}(1+z)^{3}+\Omega_{\text {rad }}(1+z)^{4}+\Omega_{\Lambda}+\Omega_{k}(1+z)^{2}}}
$$

and integrating

$$
t_{0}-t_{1}=\frac{1}{H_{0}} \int_{0}^{4} \frac{d z}{(1+z) \sqrt{\Omega_{\text {mater }}(1+z)^{3}+\Omega_{\text {rud }}}(1+z)^{4}+\Omega_{\Lambda}+\Omega_{k}(1+z)^{2}}
$$

- Age in a matter dominated universe
$\left(\mathrm{t}_{1}=\mathrm{O}, \mathrm{Z}=\infty\right) t_{0, \text { mater }}=\frac{1}{H_{0}} \int_{0}^{\infty} \frac{d z}{(1+z)^{5 / 2}}=\frac{2}{3 H_{0}}$ and $t_{0, \text { rad }}=\frac{1}{2 H_{0}}$

Distances (last time)

- We can now also express the luminosity distance $D_{L}=a_{0} x_{1}(1+z)$ in these terms - from the metric for a light ray coming towards us we have $\frac{d r}{c d t}=\frac{\sqrt{1-k x^{2}}}{a(t)}$ which turns into $\frac{\mathrm{a}_{0}}{\mathrm{c}} \frac{d x}{\sqrt{1-k x^{2}}}=(1+z) d t$
- after integration we have (using $d t$ from above)
$\frac{a_{0}}{c} \int_{0}^{x_{1}} \frac{d x}{\sqrt{1-k x^{2}}}=\int_{0}^{z_{1}} \frac{d z}{H_{0} \sqrt{\Omega_{\text {matter }(1+z)^{3}}+\Omega_{r a d}(1+z)^{4}+\Omega_{\Lambda}+\Omega_{k}(1+z)^{2}}}$

Luminosity Distance

- Putting this together with the appropriate trigonometric functions gives
$\mathrm{D}_{L}=a_{0} x_{1}(1+z)=\frac{c(1+z)}{H_{0} \sqrt{\Omega_{k} \mid} S}\left(\sqrt{\left|\Omega_{k}\right|} \int_{0}^{z} \frac{d z^{\prime}}{\sqrt{\Omega_{\text {matter }}\left(1+z^{\prime}\right)^{3}+\Omega_{\text {rad }}\left(1+z^{\prime}\right)+\Omega_{A}+\Omega_{k}\left(1+z^{\prime}\right)}}\right)$
with $s(y)= \begin{cases}\sin (y) & k>0 \\ y & k=0 \\ \sinh (y) & k<0\end{cases}$
- We now have the luminosity distance as a function of today's measurements (H_{0}, $\Omega^{\prime} s$) and the redshift z

