

Cosmological effects on the CMB (cont.)

- Influence of
 - Baryon density $\Omega_B h^2$
 - (Dark) Matter density $\Omega_{M}h^{2}$
 - Cosmological Constant energy density $\,\Omega_{\Lambda}\,$
- · Other parameters
 - neutrino mass
 - equation of state of dark energy W
 - tensor tilt n_T

8

	Parameter	Definition	
⊃lanck 2013	$\omega_{5} \equiv \Omega_{5}h^{2}$ $\omega_{k} \equiv \Omega_{c}h^{2}$ $\Omega_{0}\omega_{MC}$ Γ Ω_{K}	Baryon density today Cold dark matter density today 100 × approximation to r_c/D_A (CosmoMC) Thomson scattering optical depth due to reionization Curvature parameter today with $\Omega_{bot} = 1 - \Omega_K$ The sum of neutrino masses in eV Effective masses of sterile neutrino in eV Dark energy equation of state ⁴ , $u(a) = w_0 + (1 - a)w_a$ As above (perturbations modelled using PPF) Effective number of neutrino-like relativistic degrees of freedom (see text) Fraction of baryonic mass in helium Amplitude of the lensing power relative to the physical value Scalar spectrum power-law index ($k_0 = 0.05 \text{ Mpc}^{-1}$) Tensors spectrum power-law index ($k_0 = 0.05 \text{ Mpc}^{-1}$)	
	$\frac{\ln(10^{10}A_s) \dots}{\Omega_{\Lambda}}$	Log power of the primordial curvature perturbations ($k_0 = 0.05 \text{ Mpc}^{-1}$) Ratio of tensor primordial power to curvature power at $k_0 = 0.05 \text{ Mpc}^{-1}$ Dark energy density divided by the critical density today	
	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	Age of the Universe today (in Gyr) Matter density (inc. massive neutrinos) today divided by the critical density RMS matter fluctuations today in linear theory Redshift at which Universe is half reionized Current expansion rate in km s ⁻¹ Mpc ⁻¹ Ratio of tensor primordial power to curvature power at $k_0 = 0.002$ Mpc ⁻¹ 10 ^o x dimensionless curvature power spectrum at $k_0 = 0.05$ Mpc ⁻¹ Total matter density today (inc. massive neutrinos)	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Redshift for which the optical depth equals unity (see text) Comoving size of the sound horizon at $z = z$, $100 \times$ angular size of sound horizon at $z = z$, (r_r/D_A) Redshift at which baryon-drag optical depth equals unity (see text) Comoving size of the sound horizon at $z = z_{obg}$	

Planck 20013 parameter Solution and the six-parameter base ACDM model. Columns 2 and 3 give results for the Planck to a solution of the overall back to a solution of the WMAP polarization at low multipoles. We give best fit parameters fits and manufers have the overall back thood for each data combination) as well as 68% confidence limits for constrained parameters. The first six parameters have that priors. The remainder are derived parameters as discussed in 85ex L. Beam, calibration parameters, and foreground parameters (see Sect. 4) are not listed for brevity. Constraints on foreground parameters for *Planck*-tWP are given later in Table 5.

	Planck		Planck+lensing		Planck+WP	
Parameter	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits
$\Omega_b h^2$	0.022068	0.02207 ± 0.00033	0.022242	0.02217 ± 0.00033	0.022032	0.02205 ± 0.00028
$\Omega_c h^2$	0.12029	0.1196 ± 0.0031	0.11805	0.1186 ± 0.0031	0.12038	0.1199 ± 0.0027
$100\theta_{MC}$	1.04122	1.04132 ± 0.00068	1.04150	1.04141 ± 0.00067	1.04119	1.04131 ± 0.00063
τ	0.0925	0.097 ± 0.038	0.0949	0.089 ± 0.032	0.0925	$0.089^{+0.012}_{-0.014}$
n ₅	0.9624	0.9616 ± 0.0094	0.9675	0.9635 ± 0.0094	0.9619	0.9603 ± 0.0073
$\ln(10^{10}A_s)$	3.098	3.103 ± 0.072	3.098	3.085 ± 0.057	3.0980	3.089_0.024
Ω_{Λ}	0.6825	0.686 ± 0.020	0.6964	0.693 ± 0.019	0.6817	$0.685^{+0.018}_{-0.016}$
Ω _m	0.3175	0.314 ± 0.020	0.3036	0.307 ± 0.019	0.3183	$0.315_{-0.018}^{+0.016}$
σ ₈	0.8344	0.834 ± 0.027	0.8285	0.823 ± 0.018	0.8347	0.829 ± 0.012
Z _{re}	11.35	$11.4^{+4.0}_{-2.8}$	11.45	$10.8^{+3.1}_{-2.5}$	11.37	11.1 ± 1.1
H ₀	67.11	67.4 ± 1.4	68.14	67.9 ± 1.5	67.04	67.3 ± 1.2
$10^{9}A_{s}$	2.215	2.23 ± 0.16	2.215	$2.19_{-0.14}^{+0.12}$	2.215	$2.196^{+0.051}_{-0.060}$
$\Omega_m h^2$	0.14300	0.1423 ± 0.0029	0.14094	0.1414 ± 0.0029	0.14305	0.1426 ± 0.0025
$\Omega_m h^3$	0.09597	0.09590 ± 0.00059	0.09603	0.09593 ± 0.00058	0.09591	0.09589 ± 0.00057
<i>Y</i> _P	0.247710	0.24771 ± 0.00014	0.247785	0.24775 ± 0.00014	0.247695	0.24770 ± 0.00012
Age/Gyr	13.819	13.813 ± 0.058	13.784	13.796 ± 0.058	13.8242	13.817 ± 0.048
z	1090.43	1090.37 ± 0.65	1090.01	1090.16 ± 0.65	1090.48	1090.43 ± 0.54
r	144.58	144.75 ± 0.66	145.02	144.96 ± 0.66	144.58	144.71 ± 0.60
1000.	1.04139	1.04148 ± 0.00066	1.04164	1.04156 ± 0.00066	1.04136	1.04147 ± 0.00062
2drag	1059.32	1059.29 ± 0.65	1059.59	1059.43 ± 0.64	1059.25	1059.25 ± 0.58
r _{drag}	147.34	147.53 ± 0.64	147.74	147.70 ± 0.63	147.36	147.49 ± 0.59
kp	0.14026	0.14007 ± 0.00064	0.13998	0.13996 ± 0.00062	0.14022	0.14009 ± 0.00063
100θ _D	0.161332	0.16137 ± 0.00037	0.161196	0.16129 ± 0.00036	0.161375	0.16140 ± 0.00034
5 ₀₀	3402	3386 ± 69	3352	3362 ± 69	3403	3391 ± 60
1000eg	0.8128	0.816 ± 0.013	0.8224	0.821 ± 0.013	0.8125	0.815 ± 0.011
$r_{dens}/D_V(0.57)$	0.07130	0.0716 ± 0.0011	0.07207	0.0719 ± 0.0011	0.07126	0.07147 ± 0.00091

15

Paramet	er Planck alone	Planck + BAO	
$\Omega_{ m b}h^2\ldots\ldots$	0.02237 ± 0.00015	0.02242 ± 0.00014	
$\Omega_{\rm c}h^2$	0.1200 ± 0.0012	0.11933 ± 0.00091	
$100\theta_{MC}$	1.04092 ± 0.00031	1.04101 ± 0.00029	
τ	0.0544 ± 0.0073	0.0561 ± 0.0071	
$\ln(10^{10}A_{\rm s})$.	3.044 ± 0.014	3.047 ± 0.014	
<i>n</i> _s	$\dots \dots $	0.9665 ± 0.0038	
H_0	67.36 ± 0.54	67.66 ± 0.42	
Ω_{Λ}	0.6847 ± 0.0073	0.6889 ± 0.0056	
Ω_{m}	0.3153 ± 0.0073	0.3111 ± 0.0056	
$\Omega_{ m m}h^2\ldots\ldots$	0.1430 ± 0.0011	0.14240 ± 0.00087	
$\Omega_{ m m}h^3\ldots\ldots$	0.09633 ± 0.00030	0.09635 ± 0.00030	
σ_8	0.8111 ± 0.0060	0.8102 ± 0.0060	
$\sigma_8(\Omega_{ m m}/0.3)^{0.2}$	⁵ 0.832 ± 0.013	0.825 ± 0.011	
<i>Z</i> _{re}	$ 7.67 \pm 0.73$	7.82 ± 0.71	
Age[Gyr] .	13.797 ± 0.023	13.787 ± 0.020	
$r_*[Mpc]$	$ 144.43 \pm 0.26$	144.57 ± 0.22	
$100\theta_*$	1.04110 ± 0.00031	1.04119 ± 0.00029	
$r_{\rm drag}[{ m Mpc}]$.	147.09 ± 0.26	147.57 ± 0.22	
Zeq	3402 ± 26	3387 ± 21	
$k_{\rm eq}[{\rm Mpc}^{-1}]$.	$\dots \dots $	0.010339 ± 0.000063	
Ω_K	-0.0096 ± 0.0061	0.0007 ± 0.0019	
$\Sigma m_{\nu} [eV]$	< 0.241	< 0.120	
$N_{ m eff}$	$2.89^{+0.36}_{-0.38}$	$2.99^{+0.34}_{-0.33}$	
$r_{0.002}$	< 0.101	< 0.106	

