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1 Introduction

In this lecture I will present the basics of numerical methods that are used
for cosmological simulations. In particular, I will focus on gravity-only sim-
ulations targeted at large scale structure (LSS) studies. In this context one
simulates large cubic portions of our Universe (the typical size today is of or-
der a few Gpc per side) using random initial conditions that are compatible
with CMB observations in terms of statistics of the initial density pertur-
bations. Since we are simulating scales that always lie inside the horizon
we are going to use Newtonian gravity, although some implementations of
relativistic numerical methods already exist [see e.g. 3, 6]. In any case rela-
tivistic effects only affect the largest scales and can be neglected for most of
cosmological applications.

While most of the LSS observables have been focused on the statistics of
the density field in configuration space, modern galaxy surveys have enough
galaxies for splitting them into fine redshift bins and thus the redshift space
distortions due to peculiar velocities become an important part of the mod-
elling. For this reason new techniques are being developed where more care
is put into predicting the velocity field of the LSS. This is why I included
here some new techniques that try to use the full phase space information
(positions and velocities) both to solve for dark matter evolution and to de-
fine halos.

In Section 2 I will introduce different ways of representing the dark mat-
ter distribution in a simulation. Section 3 covers the different techniques
developed to solve the Poisson equation. In Section 4 I will describe how
to generate initial conditions and identify halos in cosmological simulations.
Finally Section 5 outlines some simple methods one can use to populate
gravity-only simulations with galaxies.

2 Simulating Dark Matter

There are two properties of dark matter that are going to be relevant for the
following: dark matter is collisionless and cold. We expect dark matter to
interact only gravitationally with itself, and even for self-interacting models
the cross-section needs to be very small for the model to be compatible with
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observations. This means that on cosmological scales we can consider dark
matter as collisionless. We can imagine that some collisional effects could
become important in the interior of halos, where the density of dark matter
particles is very high.

To verify that this is not the case let us compute the two-body relax-
ation time for a dark matter halo composed of N dark matter particles. We
want an order of magnitude estimate so we are going to make some rough
approximations. Let us consider the trajectory of a test particle moving
in the system (see Figure 1). Suppose the particle passes at a distance b

Figure 1: A test particle approaches the field particle at speed v and impact
parameter b. We approximate the test particle’s trajectory as a straight line.
From [8].

from another particle of the system (field particle from now on). We want
to compute the amount by which the encounter deflects the velocity of the
test particle. We shall assume that δv/v � 1 and that the field particle is
stationary during the encounter. This means that δv is perpendicular to v
since the parallel component averages out. If we approximate the trajectory
of the test particle as a straight line we can compute the change in velocity
by integrating the perpendicular force along the trajectory:

F⊥ =
Gm2

r2
· cos θ =

Gm2

x2 + b2
· cos θ. (1)

Using the law of cosines and that x = vt we get:

F⊥ =
Gm2

b2

[
1 +

(
vt

b

)2
]−3/2

(2)
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Integrating Newton’s law in time:

mδv =

∫ ∞
−∞

F⊥dt (3)

we arrive to:

δv =
2Gm

bv
(4)

Eq. 4 is for one encounter. If the test particle crosses the halo once it will
encounter many field particles and the deviations will add up. In the limit
where the distribution of field particles is homogeneous the average devia-
tion will be zero, but the scatter will not. So the impacts will cause a sort
of diffusion that we call two-body relaxation. The surface density of field
particles is:

Σ =
N

πR2
(5)

where R is the radius of the halo. The number of encounters with impact
parameter between b and b+ db is then:

δn =
N

πR2
2πb db =

2N

R2
b db. (6)

Summing the square velocity variations over the encounters:∑
δv2 = δv2δn =

(
Gm

vR

)2
8N

b
db (7)

and integrating over all impact parameters we get the total square velocity
variation in one crossing:

∆v2 =

∫ bmax

bmin

δv2δn = 8N

(
Gm

Rv

)2

log

(
bmax
bmin

)
. (8)

If ∆v becomes of the same order as v then we can say collisions are important.
The typical speed of a particle is one in a circular orbit at the edge of the
halo:

v2 ∼ v2
c =

GNm

R
. (9)

Using Eq. 9 to eliminate R from Eq. 8 we can rewrite ∆v as:

∆v2 =
8 log Λv2

N
(10)
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where Λ = bmax/bmin. So for ∆v to become of order v the test particle needs
to cross the halo nrelax times:

nrelax =
N

8 log Λ
(11)

The relaxation time is then defined as:

trelax = nrelaxtcross (12)

The minimal scattering happens when the particle is at the edge of the halo
so bmax = R. The maximal scattering happens when δv = v so bmin = 2R/N .
This gives:

trelax =
N

8 logN/2
tcross. (13)

Let’s put in some numbers: for a galactic scale halo tcross ∼ 1/(10H0), and
for 100GeV WIMP DM particles N ∼ 1077. This means that the two-body
relaxation time for dark matter halos is much larger than the age of the Uni-
verse so we can consider DM particles as a collisionless fluid: we can ignore
individual and short-range interactions and treat the density distribution as
smooth.

2.1 Vlasov-Poisson system of equations

A self-gravitating collisionless fluid of particles of mass m is described in
phase space by its distribution function f(t,x,p), where p = mv is the
momentum, and its evolution is given by the collisionless Boltzmann equation
(CBE) [8]:

df(t,x,p)

dt
=
∂f

∂t
+

p

ma2
· ∇xf −m∇xφ · ∇pf = 0, (14)

with the gravitational potential φ obeying the Poisson equation:

∇2φ =
4πGmDM

a

(∫
d3pf − n̄

)
, (15)

where mDM is the microphysical dark matter mass and n̄ is the mean number
density of DM particles in the universe. The system of collisionless Boltz-
mann and Poisson equations is usually called the Vlasov-Poisson system of
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equation. Basically, it simply states that the phase space density is con-
served. It is advected in configuration space by velocities, and in velocity
space by gravitational forces. One could think of expanding the CBE in its
hierarchy of moments similarly to what is done for gases, but in the colli-
sionless case this is not possible because each moment depends on the next
order moment and the hierarchy cannot be closed.

In the case of cold dark matter (CDM) the thermal velocity dispersion is
much smaller than the bulk velocity due to gravitational interactions, so its
velocity distribution has negligible width. This confines the evolution of f in
a 3D sub-manifold of phase space (also called the DM sheet) and reduces the
dimensionality of the problem, allowing to solve the Vlasov-Poisson system
in 3D configuration space. In linear regime the sheet does not fold, so in
each point x the velocity is single-valued and DM can be treated as a perfect
fluid with P ≈ 0 [26], i.e. the hierarchy can be closed and you only need
the first two moments (continuity and Euler equations). As soon as shell
crossing occurs multiple streams with different velocities pass through the
points where caustics form and the fluid can no longer be described by bulk
quantities. In the perfect fluid description this is when the velocity dispersion
starts to be non-zero and you need the full hierarchy of moments.

2.2 A 1D example

We can have a nice picture of the behavior of the DM sheet with a simple
1D example: the collapse of a plane wave. In Figure 2 you can see the initial
conditions and the evolved phase space DM sheet. Shell-crossing occurs at
some time ac. The left panel shows the distribution function at a = ac/10,
the central one at shell-crossing a = ac and the right panel at a much later
time a = 10ac.

If we project the sheet in configuration space to compute the density:

ρ(x) = m

∫
f(t, x, p)dp (16)

we see that caustics form (see Figure 3). The moment when caustics form
is called shell crossing because if you follow the trajectory of elements, at
a certain moment they will cross the trajectory of another element and the
projection of the distribution function in that point of configuration space
will become infinite and then multivalued. See Figure 4.
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Figure 2: Evolution of a plane wave collapse using the CBE (credit: O. Hahn)

Figure 3: Top panel: phase space distribution function for a collapsed plane
wave. Bottom panel: density projected in configuration space. The spikes in
the density are the caustics. (Credit: O. Hahn)
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Figure 4: Left panel: initial phase space distribution. Middle panel: tra-
jectories of elements in configuration space. Right panel: final phase space
distribution. The grey vertical line indicates the time of shell crossing ac.
(Credit: O. Hahn)
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2.3 The N-body technique

The solution of Eq.(14) can be represented by an infinite set of characteristics
along which the phase space density is conserved. N-body techniques rely
on a coarse-graining of the distribution function, which corresponds to sam-
pling the characteristics with a finite number N of tracers. The distribution
function of these tracers is [15, 9]:

fN(t,x,p) =
N∑
i=1

δD(x− xi(t))δD(p− pi(t)). (17)

Substituting Eq.(17) in (14) we can see that the tracers follow the equations
of motion:

ẋp = vp, (18)

v̇p = −∇φ, (19)

where xp and vp are the position and velocity of the tracers. These tracers
can be viewed as particles representing a discrete volume δV containing a
mass m of microscopic DM particles. Assuming that the points are fairly
sampling f , they can also be used to estimate a density, from which then the
gravitational force can be calculated through the Poisson equation. A simple
way of estimating the density will then be given by:

ρ(x, t) = m
N∑
i=1

δD(x− xi(t)). (20)

This density estimate will however not be smooth, and in fact, it can lead
to arbitrarily high accelerations if two points come arbitrarily close. Such
accelerations would however be a pure artefact of the sampling. In the limit
N → ∞ they should never appear. To this end, a better estimate is given
by:

ρ(x, t) = m

N∑
i=1

δD(x− xi(t)) ∗Wh(x) (21)

where Wh is a kernel that spreads out each of the points to a scale h so that
nearby points overlap and the density field becomes smooth.
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2.4 The Lagrangian phase space technique

We have seen before that the dark matter phase space distribution is confined
in a 3D sub-manifold of the 6D phase space. One can parametrise this sub-
manifold Q in terms of lagrangian coordinates q:

Q ⊆ R3 → R3 ⊗ R3 : q 7→ (xq,vq) , (22)

whose evolution describes the whole evolution of the fluid. We can decom-
pose the lagrangian manifold into finite volume elements that carry constant
mass and define a local mapping between lagrangian and eulerian space, see
Figure 5 for a 2D example. This map can be approximated by multi-variate

Lagrangian space Eulerian space

q ↦ xq

Figure 5: Mapping of one fluid element from lagrangian to eulerian coordi-
nates. The numbered points represent the flow tracers. From [13].

polynomials. The coefficients of these polynomials, each defined on its La-
grangian cubical element, can be represented by a number of supporting
points (or flow tracer particles), shown as numbered points in Figure 5. The
number of these tracers per element is given by the order of the polynomials,
so that a larger number of tracers corresponds to a more accurate representa-
tion of the mapping. It can be shown that the equations of motion for these
tracers are [13]:

ẋαβγ = vαβγ (23)

v̇αβγ = −J−1fαβγ (24)

where Jij = ∂xi/∂qj is the Jacobian of the map and f = ∇qφ is the force in
lagrangian space.
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Problem: computing the force due to these complexly shaped elements
in Eulerian space is complicated, if at all possible. One solution is to replace
the elements with massive particles located in their center of mass and then
their mass is deposited onto a grid in Eulerian space [13]. In this case the
method has two sets of tracers: mass tracers and flow tracers. Since the mass
tracers are not interacting with each other there are no spurious two-body
interactions like in the N-body case. This method works well for warm dark
matter simulations, where N-body techniques fail due to artificial fragmenta-
tion [12, 23]. For the cold case one needs to introduce refinements to follow
the rapid growth of the element’s volume in the deeply non-linear regime of
gravitational collapse (i.e. at the center of halos).

3 Gravity solvers

Once one finds a representation of the density field, the Poisson equation can
be solved to find the gravitational potential. The different N-body codes use
different approaches for this step. I will describe the basics of each method
and discuss pros and cons.

3.1 Particle-particle

The simplest approach to compute the gravitational force acting on particles
is called direct summation or Particle-Particle (PP)[2]: the sum

f(xj) = mj

∑
i 6=j

Gmi
xi − xj
|xi − xj|3

(25)

is performed for each particle j summing over all the other N − 1 particles
i. This method has a computational cost of the order of N2, making it unaf-
fordable for cosmological simulations, where the number of particles ranges
from 106 to 1012. Moreover, this method diverges when close encounters oc-
cur between two particles, so a “smoothing” of the force is required [1]. This
is done by substituting the Newtonian force with a force f softij that tends to
fnewtij when |xi − xj| → ∞ and tends to 0 when |xi − xj| → 0. A simple
example of such a smoothed force is:

f softij = Gmimj
xi − xj

(|xi − xj|2 − ε2)3/2
, (26)
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where ε is called softening length and can be interpreted as the size of the
particles. Unphysical two-body interactions can arise if the softening length
is smaller than the mean inter-particle separation [20], leading to departures
from the collisionless nature of the Vlasov-Poisson system.

3.2 Hierarchical Tree

The so called Hierarchical Tree methods [5] alleviate the computational cost
of the Poisson solver by using direct summation only for particles that are
below a certain distance, while the force due to long range interactions is ap-
proximated by expanding the gravitational field in multipoles and truncating
the expansion to a given order. The computational cost of these algorithms
is of the order of N logN . In these methods, particles are assigned to a tree
of computational cells, which is constructed by iterative subdivision of the
volume of each cell in 8 parts (octree), halting the procedure when all the
cells contain either 0 or 1 particles. See Figure 6 for the representation of a
2D example.

Figure 7 sketches the configuration for the multipole expansion. To com-
pute the force exerted by a collection of particles on a particle at a given
distance one can approximate the gravitational potential of the group

φ(r) = −G
∑
i

mi

|r− xi|
= −G

∑
i

mi

|r− s + s− xi|
(27)

by Taylor expanding the denominator for xi − s � r − s. The expansion
gives [11]:

1

|y + s− xi|
=

1

|y|
− y(s− xi)

|y|3
+

1

2

yT [3(s− xi)(s− xi)
T − (s− xi)

2]y

|y|5
+ ...

(28)
where y = r − s. These terms define the monopole, dipole and quadrupole
of the group of particles:

M =
∑

imi, (29)

Di =
∑

jmj(s− xj) = 0, (30)

Qij =
∑

kmk

[
3(s− xi)(s− xi)

T − (s− xi)
2
]
. (31)

The dipole vanishes because we carried out the expansion around the center
of mass:

s =
1

M

∑
i

mixi. (32)
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Figure 6: Examples of 2D hierarchical trees.
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Figure 7: Multipole expansion for a group of distant particles. Provided
the reference point r is sufficiently far away, the particles are seen under a
small opening angle θ, and the field created by the particle group can be
approximated by the monopole term at its center of mass, augmented with
higher order multipole corrections if desired. From [11]

If we stop the expansion at quadrupole order the potential is then given by:

φ(r) = −G
(
M

|y|
+

1

2

yTQy

|y|5

)
, (33)

from which the force can be obtained by differentiation. The opening angle
θ is adjusted so that smaller distances correspond to larger opening angles.
This procedure assures high resolution of the force in high density regions
but is inefficient for low contrast mass distribution.

3.3 Particle-Mesh

Particle-mesh (PM) methods [14] take a different approach to solve the Pois-
son equation. In these methods a grid is superimposed to the particle dis-
tribution and physical quantities like density and velocity are interpolated
from particle positions to grid nodes. The Particle Mesh algorithm assumes
a that particles have certain size, mass, shape, and internal density. This
determines the interpolation scheme used to assign densities to grid cells.
Let’s define the 1D particle shape, S(x), to be mass density at the distance
x from the particle for cell size ∆x. The common choices are:
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Nearest Grid Point (NGP) : particles are point-like and all of particle’s
mass is assigned to the single grid cell that contains it. The shape
function is:

S(x) =
1

∆x
δ
( x

∆x

)
(34)

Cloud In Cell (CIC) : particles are cubes (in 3D) of uniform density and
of one grid cell size. The shape function is:

S(x) =
1

∆x

{
1 if |x| < 0.5∆x

0 otherwise
(35)

Triangular Shaped Cloud (TSC) : the shape function is:

S(x) =
1

∆x

{
1− x

∆x
if |x| < ∆x

0 otherwise
(36)

The fraction of the particle’s mass assigned to a cell ijk is the shape function
averaged over this cell:

W (xp − xijk) =

∫ xijk+∆x/2

xijk−∆x/2

dx′S(xp − x′) (37)

The density in a cell ijk is then:

ρijk =

Np∑
p=1

mpW (rp − rijk), (38)

where:

W (rp − rijk) = W (xp − xijk)W (yp − yijk)W (zp − zijk). (39)

Imposing periodic boundary conditions allows one to use Fast Fourier
Transform algorithms [21] to compute the potential. In fact, in Fourier space
the Poisson equation is:

φ(k) = G(k) ρ(k), (40)

where G(k) is the Green function, whose form depends on the discretisa-
tion scheme. For example, for the CIC assignment case, that is the most
commonly used, the Green function is given by:

G(k) =
Ωm

3a

[
sin2 kx

2
+ sin2 ky

2
+ sin2 kz

2

]−1

. (41)
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PM algorithms first transform ρ(x)→ ρ(k) using forward FFT, multiply
it by the Green function to obtain φ(k) and then transform φ(k) → φ(x)
using backwards FFT. The potential is then interpolated back to the parti-
cle positions. The advantage of this approach is that grid methods have a
“natural” softening length given by the spacing of the grid points, which also
sets the resolution scale of the simulation. This also means that the numeri-
cal error on the force with this method is more predictable than with PP or
Tree methods. In the limit of vanishing spacing (Ng → ∞) we recover the
Vlasov-Poisson system. The computational cost of PM methods is of order
N for particle displacements and Ng logNg for the Poisson solver, where Ng

is the number of grid nodes.

3.4 Hybrid approaches and refinement

Modern cosmological simulation codes use hybrid approaches that combine
the methods described above for different regimes or introduce refinement of
the grid to have a better resolution inside high density peaks. TreePM hy-
brid methods use the Tree algorithm for small-range interactions and exploit
the speed of FFT to compute long-range gravitational forces with the PM
algorithm. Adaptive Mesh Refinement (AMR) methods allow to reach higher
accuracy in high density regions with respect to PM methods by introduc-
ing sub-grids with finer spacing where the density in the grid cells exceeds a
given threshold. The potential at refined levels of the grid is computed with
relaxation methods, using the solution interpolated from the previous level
as initial guess and as boundary conditions, while at coarse level the poten-
tial is computed using standard FFT methods [17, 22]. For the lagrangian
phase space method since the discretisation error increase with the size of the
elements a natural refinement criterium is to split each element into smaller
elements.

4 Cosmological simulations

Cosmological simulations solve the Vlasov-Poisson system of equations for
matter perturbations in an expanding universe, where the evolution of the
scale factor a is given by the background cosmological model. The main
driver of the computational cost of simulations is the number of particles.
For a fixed number of particles there is a compromise to be made between
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the volume and the mass resolution, i.e. the smallest mass object that can
be resolved in the simulation. This is represented in Figure 8 where some
state-of-the-art simulations (in 2015) are represented as points in the volume
versus mass resolution plane. The diagonal lines show the relation between
volume and mass resolution for a fixed number of particles. Ideally for LSS

Figure 8: Volume and mass resolution for state-of-the-art cosmological sim-
ulations. Diagonal lines show the relation between volume and mass resolu-
tion for a fixed number of particles. The vertical right axis shows the faintest
galaxy luminosity reached when populating the simulation using HOD (see
Section 5.2). From [10].

studies one would want to cover a volume of order tens of Gpc3 to beat
down sample variance and at the same time resolve all the galactic scale
halos. These requirements result in a number of particles of the order of
tens of trillions, which is on the limit of what can be done today in the most
powerful supercomputers. Even with the most efficient codes available today
such simulations take millions of cpu-hours on hundreds of CPUs.

4.1 Initial Conditions

From CMB observations we know that at early times the fluctuation field δ
is a homogeneous and isotropic Gaussian random field. For such a field, a
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particular realisation can be written as:

δ(x) =
1

(2π)3

∫
d3k
√
P (k)λk eik·x, (42)

where λk is a white noise field, i.e. a complex Gaussian random field that
satisfies the independence condition:

〈λk1λ
∗
k2
〉 = (2π)3δD(k2 − k1). (43)

Since δ(x) is real the white noise is also subject to the Hermitian condition:

λ∗k = λ−k. (44)

A realisation of the λk field can be obtained by drawing Gaussian random
numbers with zero mean and unity variance at each grid-point. This field is
then multiplied by the square-root of linear power spectrum for the desired
cosmology, which can be computed using Boltzmann codes like CAMB [19]
or CLASS [18]. Once the density field is constructed, the velocity field is
computed using linear theory:

v = −i a Ḋ+

D+

k

k2
δ. (45)

FFT methods are used to Fourier transform the obtained density and veloc-
ity fields in configuration space. Once chosen a pre-initial configuration of
particles, positions and velocities are evolved to the initial redshift of the sim-
ulation using Zel’dovich approximation. The displacement field is computed
as:

s =
v

a Ḋ+

, (46)

and particle positions and velocities are given by:

xp(a) = q +D+ s(q), (47)

vp(a) = a Ḋ+ s(q), (48)

where q is the pre-initial position of the particle. In the simplest approach
particles are placed at the position of grid-points, but in some cases their
pre-initial configuration can be chosen not to coincide with the grid (e.g.
glass configurations [25]). In such cases an additional interpolation of the
velocity field to particle positions is required to compute the displacement.
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Initial conditions for cosmological simulations are generated at high red-
shift, usually z ∼ 100, where the Zel’dovich approximation is still valid on
the scales of interest. One can also use higher order lagrangian perturbation
theory to compute displacements, allowing to start the simulation at lower
redshift, z ≤ 70.

4.2 Identifying Halos

A halo is a gravitationally bound region in which matter has decoupled from
the Hubble flow and collapsed. Finding the boundary of a halo is not an
easy task since their density profile decays smoothly with radius. Even more
complicated is finding a definition that can be measured observationally.
There have been multiple definitions used in the field:

Friends of Friends Percolation algorithm. Groups that contain all parti-
cles separated by distance less than a given linking length, bl̄, where l̄ is
the mean inter-particle separation in simulations and b is a free param-
eter of the algorithm. The velocity of the halo is computed as the aver-
age of all halo particle velocities. Sub-halos can be found by decreasing
the linking length. Pros: simple (only one parameter), doesn’t assume
anything about the halo, used in observations. Cons: no analytical
predictions, sensitive to resolution, velocities are not very accurate.

Spherical Over-density the radius of the sphere enclosing n times the
average/critical density.

ρ̄h =
3M∆

4πr3
∆

= ∆ρref (49)

where ∆ is the threshold and ρref is the reference density. Usual choices
for ∆ are a constant value ∼ 200 or a time-varying ∆vir motivated by
the spherical collapse model. ρref is usually set to either the mean
matter density or the critical density at the redshift of the halo. Pros:
can be predicted with analytical models of halo collapse, can be used
in observations. Cons: assumes spherical symmetry, leads to pseudo-
evolution of mass.

Splashback Radius the radius at which the density profile has a sharp
drop (see Figure 9). This seems to coincide with the region where
particles accumulate on the first apocenter passage after their infall
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onto a halo. These particles pile up due to their low radial velocity,
creating a caustic that manifests itself as a sharp drop in the density
profile. Pros: more physical. Cons: hard to measure in real data.

Phase space finders uses full 6D phase space information of particles to
identify halos. An example of such algorithm is summarised in Fig-
ure 10. Pros: does a better job during halo mergers and identifying
sub-halos, halo properties are more accurate. Cons: hard to predict
analytically.
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Figure 9: Top: the phase space diagram for halos from the MultiDark sim-
ulation in the mass range M = 1− 4× 1014h−1M�. The colorbar shows the
number of particles within each phase space pixel. Bottom: the local slope of
the density of all particles (red) and particles with |vr| < 0.4 vcirc (blue), as
a function of radius r. The location of the feature in the local slope coincides
with the outer caustic at the splashback radius. From [4].

Since a lot of the modelling uses halo masses (cluster mass function, halo
occupation distribution) it is important to use a consistent mass definition.
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1. The simulation volume is divided into 3D Friends-
of-Friends groups for easy parallelization.

2. For each group, particle positions and velocities are
divided (normalized) by the group position and veloc-
ity dispersions, giving a natural phase-space metric.

3. A phase-space linking length is adaptively chosen
such that 70% of the group’s particles are linked to-
gether in subgroups.

4. The process repeats for each subgroup: renormal-
ization, a new linking-length, and a new level of sub-
structure calculated.

5. Once all levels of substructure are found, seed halos
are placed at the lowest substructure levels and par-
ticles are assigned hierarchically to the closest seed
halo in phase space.

6. Once particles have been assigned to halos, un-
bound particles are removed and halo properties (po-
sitions, velocities, etc.) are calculated.

Figure 10: A visual summary of the Rockstar phase space halo finding algo-
rithm [7].
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5 Statistical modelling of galaxy distribution

In order to compare results from simulations to observations one needs to
relate the statistics of the matter distribution to the visible matter compo-
nent. Most of the LSS surveys observe galaxies, so we need a prescription to
relate the dark matter and the galaxy distribution.

Galaxy formation is a messy process that depends on the detail of the
astrophysical processes at galactic and sub-galactic scales. One can use hy-
drodynamical simulations that include the gas component, but even in that
case there is a lot of physics that remains unresolved and needs to be treated
effectively. Fortunately, for the purpose of measuring statistical properties of
the galaxy density field we can rely on a simplified picture of galaxy forma-
tion. To summarise this picture in a few sentences: at early times perturba-
tions in the dark matter component start collapsing and forming halos. The
gas falls into the potential well of dark matter halos and if the halo is large
enough the gas can cool and form stars and galaxies. We know structure
formation is bottom-up, so first the small halos are formed and then they
merge to create larger structures. Galaxies inside the halos continue to form
stars and accrete new material during mergers.

At first order we can say that the properties of galaxies only depend on
halo mass: the larger the halo, the larger the galaxy inside the halo. This
means that we can build a simple relation between halo mass and e.g. stellar
mass of the galaxy that will tell us about the efficiency of star formation in
different halos. Figure 11 summarises the results from different methods that
probe the stellar-to-halo mass relation. All available methods now paint a
consistent picture of this relation: it peaks at a few per-cent efficiency around
L∗ galaxies. At high mass AGN feedback heat the gas preventing it to form
new stars. At low mass winds from massive stars eject the gas from the
galaxy. Below a certain threshold there is not enough gas to form a galaxy.
We currently think this happens below Mh = 109M�.

We will distinguish between central galaxies, that reside in the center of
the halo, and satellite galaxies, that reside in sub-halos that orbit in the main
halo. Resolving substructures in simulations can be hard due to the limited
mass resolution: on one hand the smallest structures cannot be identified
because they are represented only by a handful of particles and on the other
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Figure 11: Stellar-to-halo mass ratio of central galaxies at z = 0. Bottom
panel shows example galaxies that are hosted by halos in the specified mass
range. Across the top of the figure, we indicate key physical processes that
may be responsible for ejecting or heating gas or suppressing star formation
at those mass scales. From [24].
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hand even if they can be identified their mass is stripped by tidal interactions
with the host halo, so that they can fall below the threshold of detectability
and disappear during the simulation. For this reason a number of proxies for
sub-halo mass is used, like the mass at the time of accretion into the main
halo or the maximum circular velocity.

5.1 Abundance Matching

Simplest assumption: the most massive galaxies live in the most massive
dark matter halos. We can generate a realisation of a measured stellar mass
function and associate each galaxy to a halo in a rank-ordered way. This is
called Abundance Matching. One can also use sub-halos (SHAM). Usually
stellar mass is used for matching but one can also use luminosity. Since the
stellar-to-halo mass relation has some scatter, one can introduce a scatter
in the matching. The amount of scatter can be constrained using clustering
measurements.

5.2 Halo Occupation Distribution

In the halo occupation distribution (HOD) framework the galaxy-halo con-
nection is modelled using a probability distribution for the number of galaxies
(with some selection) in a halo, conditioned on some halo property, usually
their mass, P (N |M). This is usually separated into central and satellite
galaxies, each with its own distribution. Usually centrals are distributed
with a Bernoulli distribution and satellites with a Poisson distribution. We
only need to know the average occupation number to specify the distribu-
tions. Using hi-res simulations it was determined that the functional shape
of the sub-halo abundance is a power-law Mα where α ∼ 1 [16].

〈N〉 =

{
0 if M < Mmin

(M/M1)α otherwise,
(50)

This was shown to hold for luminosity or stellar mass threshold selected
galaxies. For more complicated selections the functional shape can be more
complex.
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