Exercise sheet 12

Baker-Campbell-Hausdorff formula

Consider the operators X and Y. Their commutator is represented by:

$$\operatorname{ad}_{X}Y = [X, Y] = XY - YX. \tag{1}$$

Exercise 12-1

Our first aim is to calculate $e^X Y e^{-X}$.

a) Write XY as a combination of YX and ad_XY . (1 point)

We define $\operatorname{ad}_X^{k+1}Y = \operatorname{ad}_X(\operatorname{ad}_X^k Y) = [X, \operatorname{ad}_X^k Y]$ with the base case $\operatorname{ad}_X^0 Y = Y$. Thus, [X, [X, Y]] can be written as $\operatorname{ad}_X(\operatorname{ad}_X Y) = \operatorname{ad}_X^2 Y$ and so on.

We now use induction to prove that

$$X^{n}Y = \sum_{k=0}^{n} \binom{n}{k} (\operatorname{ad}_{X}^{k}Y)X^{n-k} \quad \forall n.$$
⁽²⁾

The base case is $X^0Y = (ad_X^0Y)X^0 = Y$, which holds trivially. The case n = 1 is part (a).

b) Assume now that

$$X^{n}Y = \sum_{k=0}^{n} \binom{n}{k} (\operatorname{ad}_{X}^{k}Y)X^{n-k}$$
(3)

and use this to show that $X^{n+1}Y = \sum_{k=0}^{n+1} {n+1 \choose k} (\operatorname{ad}_X^k Y) X^{n+1-k}$. (3 points)

Thus, we have inductively proved equation 2

We define $e^{\operatorname{ad}_X} = \sum_{n=0}^{\infty} \frac{1}{n!} \operatorname{ad}_X^n$.

c) Use the expansion of e^X to show that $e^X Y = (e^{\operatorname{ad}_X} Y) e^X$. (3 point) Hint: Use the fact that $\sum_{n=0}^{\infty} \sum_{k=0}^{n} = \sum_{k=0}^{\infty} \sum_{j=n-k=0}^{\infty}$.

It is thus seen that $e^X Y e^{-X} = e^{\operatorname{ad}_X} Y$.

d) Use the fact that $e^X Y = (e^{\operatorname{ad}_X} Y) e^X$ to show that

$$e^X e^Y = e^{e^{\operatorname{ad}_X}(Y)} e^X. (4)$$

(2 points)

Hint: First consider $e^X Y^2$ and then $e^X Y^n$.

Note that $e^{e^{\operatorname{ad}_X}(Y)}e^X \neq e^{e^{\operatorname{ad}_X}}(Y)e^X$! Think about the difference between the two.

Exercise 12-2

We now calculate the expectation for particular operators.

a) Consider operators X and Y such that their commutator $ad_X Y = [X, Y]$ commutes with X. Calculate the expression in equation 4. (2 points)

Consider now $X = \hat{a}^x = D^{xzd/dm^z}$ and $Y = (\hat{a}^{\dagger})^y = m^y$ from the lecture.

b) Calculate the commutator $[\hat{a}^x, (\hat{a}^{\dagger})^y]$ and show that this commutes with \hat{a}^x . (1 point)

- c) Move $e^{\hat{a}^x}$ through $e^{(\hat{a}^{\dagger})^y}$ in $e^{\hat{a}^x} e^{(\hat{a}^{\dagger})^y}$ using the results above. (1 points)
- d) Use the results from the above exercises and the lecture notes to calculate $\langle e^{s^x} e^{s^y} e^{s^z} \rangle = e^{\hat{\Phi}^x} e^{\hat{\Phi}^y} e^{\hat{\Phi}^z} 1$. Here, $\hat{\Phi}^x = \hat{a}^x + (\hat{a}^{\dagger})^x$. (2 points)

https://www.mpa.mpa-garching.mpg.de/~ensslin/lectures/lectures.html

This exercise sheet will be discussed during the exercises. Group 01, Wednesday 18:00 - 20:00, Theresienstr. 37, A 449, Group 02, Thursday, 10:00 - 12:00, Theresienstr. 37, A 249,