Exercise sheet 12

Baker-Campbell-Hausdorff formula

Consider the operators X and Y. Their commutator is represented by:

$$
\begin{equation*}
\operatorname{ad}_{X} Y=[X, Y]=X Y-Y X \tag{1}
\end{equation*}
$$

Exercise 12-1

Our first aim is to calculate $e^{X} Y e^{-X}$.
a) Write $X Y$ as a combination of $Y X$ and $\operatorname{ad}_{X} Y$. (1 point)

We define $\operatorname{ad}_{X}^{k+1} Y=\operatorname{ad}_{X}\left(\operatorname{ad}_{X}^{k} Y\right)=\left[X, \operatorname{ad}_{X}^{k} Y\right]$ with the base case $\operatorname{ad}_{X}^{0} Y=Y$. Thus, $[X,[X, Y]]$ can be written as $\operatorname{ad}_{X}\left(\operatorname{ad}_{X} Y\right)=\operatorname{ad}_{X}^{2} Y$ and so on.

We now use induction to prove that

$$
\begin{equation*}
X^{n} Y=\sum_{k=0}^{n}\binom{n}{k}\left(\operatorname{ad}_{X}^{k} Y\right) X^{n-k} \quad \forall n \tag{2}
\end{equation*}
$$

The base case is $X^{0} Y=\left(\operatorname{ad}_{X}^{0} Y\right) X^{0}=Y$, which holds trivially. The case $n=1$ is part (a).
b) Assume now that

$$
\begin{equation*}
X^{n} Y=\sum_{k=0}^{n}\binom{n}{k}\left(\operatorname{ad}_{X}^{k} Y\right) X^{n-k} \tag{3}
\end{equation*}
$$

and use this to show that $X^{n+1} Y=\sum_{k=0}^{n+1}\binom{n+1}{k}\left(\operatorname{ad}_{X}^{k} Y\right) X^{n+1-k}$. (3 points)
Thus, we have inductively proved equation 2
We define $e^{\operatorname{ad}_{X}}=\sum_{n=0}^{\infty} 1 / n!\operatorname{ad}_{X}^{n}$.
c) Use the expansion of e^{X} to show that $e^{X} Y=\left(e^{\operatorname{ad}_{X}} Y\right) e^{X}$. (3 point)

Hint: Use the fact that $\sum_{n=0}^{\infty} \sum_{k=0}^{n}=\sum_{k=0}^{\infty} \sum_{j=n-k=0}^{\infty}$.
It is thus seen that $e^{X} Y e^{-X}=e^{\operatorname{ad}_{X}} Y$.
d) Use the fact that $e^{X} Y=\left(e^{\operatorname{ad}_{X}} Y\right) e^{X}$ to show that

$$
\begin{equation*}
e^{X} e^{Y}=e^{e^{\operatorname{ad} X}(Y)} e^{X} \tag{4}
\end{equation*}
$$

(2 points)
Hint: First consider $e^{X} Y^{2}$ and then $e^{X} Y^{n}$.
Note that $e^{e^{\mathrm{ad} X}(Y)} e^{X} \neq e^{e^{\mathrm{ad} X}}(Y) e^{X}$! Think about the difference between the two.

Exercise 12-2

We now calculate the expectation for particular operators.
a) Consider operators X and Y such that their commutator $\operatorname{ad}_{X} Y=[X, Y]$ commutes with X. Calculate the expression in equation 4. (2 points)

Consider now $X=\hat{a}^{x}=D^{x z} d / d m^{z}$ and $Y=\left(\hat{a}^{\dagger}\right)^{y}=m^{y}$ from the lecture.
b) Calculate the commutator $\left[\hat{a}^{x},\left(\hat{a}^{\dagger}\right)^{y}\right]$ and show that this commutes with \hat{a}^{x}. (1 point)
c) Move $e^{\hat{a}^{x}}$ through $e^{\left(\hat{a}^{\dagger}\right)^{y}}$ in $e^{\hat{a}^{x}} e^{\left(\hat{a}^{\dagger}\right)^{y}}$ using the results above. (1 points)
d) Use the results from the above exercises and the lecture notes to calculate $\left\langle e^{s^{x}} e^{s^{y}} e^{s^{z}}\right\rangle=$ $e^{\hat{\Phi}^{x}} e^{\hat{\Phi}^{y}} e^{\hat{\Phi}^{z}} 1$. Here, $\hat{\Phi}^{x}=\hat{a}^{x}+\left(\hat{a}^{\dagger}\right)^{x}$. (2 points)

This exercise sheet will be discussed during the exercises.
Group 01, Wednesday 18:00-20:00, Theresienstr. 37, A 449,
Group 02, Thursday, 10:00-12:00, Theresienstr. 37, A 249,
https://wwwmpa.mpa-garching.mpg.de/ ensslin/lectures/lectures.html

