Exercise sheet 8

Conjugate Gradient Method

The following problems would outline a proof of the conjugate gradient method. We want to solve the system of equations

$$4x = b, (1)$$

where A is a positive definite, symmetric matrix. The solution is $x_* = A^{-1}b$. An alternative formulation of the problem is to minimize the objective function

$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x.$$
(2)

The Cayley-Hamilton theorem tells us that $A^{-1} = \mathcal{P}_n(A)$ where \mathcal{P}_k is a polynomial of degree less than k. And therefore, x_* can be found by searching the Krylov subspaces $\mathcal{K}_k = \operatorname{span}\{b, Ab, \ldots, A^{k-1}b\}$. The Krylov sequence of points x_0, x_1, \ldots, x_n are such that they minimize the objective function of equation 2:

$$f(x_k) \le f(\bar{x}_k) \quad \forall x_k, \bar{x}_k \in \mathcal{K}_k.$$
(3)

The conjugate gradient method considers two sets of bases for \mathcal{K}_k :

- a conjugate orthogonal basis $\mathcal{K}_k = \text{span}\{p_o, p_1, \dots, p_{k-1}\}$, with $p_i^T A p_j \propto \delta_{ij}$, of search directions, and,
- an orthogonal basis $\mathcal{K}_k = \operatorname{span}\{r_o, r_1, \dots, r_{k-1}\}$, with $r_i^T r_j \propto \delta_{ij}$, of gradients.

The gradients r_k are found at the Krylov sequence points: $r_k = b - Ax_k$.

Exercise 8-1

Optimal Directions

a) Given the minimal point $x_k \in \mathcal{K}_k$ and the new (A-orthogonal) direction p_k to search, we seek the minimal point in \mathcal{K}_{k+1} . Argue that any point \bar{x}_{k+1} in \mathcal{K}_{k+1} can be written as:

$$\bar{x}_{k+1} = \bar{x}_k + \bar{\alpha}_k p_k \tag{4}$$

where \bar{x}_k is an arbitrary point in \mathcal{K}_k . (1 point)

b) Show that the loss function of equation 2 can be written as

$$f(\bar{x}_{k+1}) = f(\bar{x}_k) + \underbrace{A}_{\bar{x}_k \text{ dependent}} + \underbrace{B}_{\bar{x}_k \text{ independent}}, \tag{5}$$

and find A and B. (2 points)

- c) Use the idea of A-orthogonality of the $\{p_i\}$ to show that $p_k^T A \mathcal{K}_j = 0 \ \forall j \leq k$ and thereby that A from the above equation vanishes. (2 points)
- d) The objective function separates into an \bar{x}_k dependent and independent part:

$$f(\bar{x}_{k+1}) = f(\bar{x}_k) + B.$$
(6)

Argue that x_k is the optimal value for the function in the \bar{x}_k dependent part in \mathcal{K}_k (remember that x_k is in the Krylov sequence). Find the value α_k of $\bar{\alpha}_k$ that minimizes B. Thereby find the optimal value x_{k+1} of \bar{x}_{k+1} . (3 point)

Exercise 8-2

Induction

We use induction to derive the conjugate gradient method algorithm. The starting conditions are:

- $x_0 = 0 \in \mathcal{K}_0$,
- $r_0 = b Ax_0 = b \in \mathcal{K}_1$, and,
- $p_0 = b \in \mathcal{K}_1$.
- a) Given the point $x_k \in \mathcal{K}_k$ and direction $p_k \in \mathcal{K}_{k+1}$ to move in, the new point is given by some $x_{k+1} = x_k + \bar{\alpha}_k p_k$. Show that

$$r_{k+1} = r_k - \bar{\alpha}_k A p_k \tag{7}$$

and that $r_{k+1} \in \mathcal{K}_{k+2}$. (2 point)

- b) Given that $r_i^T r_j = \delta_{ij}$ in \mathcal{K}_{k+1} , show that $r_i^T r_{k+1} = 0$ for i < k. HINT: Use exercise c in question 1. (2 points)
- c) Find the value of $\bar{\alpha}_k$ such that $r_k^T r_{k+1} = 0$. Call it α_k . (1 point)
- d) We now want to find a new search direction $p_{k+1} \in \mathcal{K}_{k+2}$ such that it is A-perpendicular (and in general not perpendicular) to all the previous search directions: $p_{k+1}^T A \mathcal{K}_{k+1} = 0$. As $r_{k+1} \in \mathcal{K}_{k+2}$, this search direction can be generally written as:

$$p_{k+1} = r_{k+1} + \sum_{j \le k} \bar{\beta}_j p_j.$$
(8)

Requiring that $p_i^T A p_{k+1} = 0$ for i < k, show that $\bar{\beta}_i = 0$ for i < k. HINT: Use equation 8. (3 points)

e) Thus,

$$p_{k+1} = r_{k+1} + \bar{\beta}_k p_k. \tag{9}$$

Find the value of $\bar{\beta}_k$ such that $p_k^T A p_{k+1} = 0$. Call it β_k . (1 point)

Exercise 8-3

Cleaning Up

- **a)** Show that $r_k^T A p_k = p_k^T A p_k$. (1 point)
- **b)** Show that $r_{i+1}^T p_k = r_i^T p_k$ for i < k. (1 point)
- c) Using the expression for α_k from exercise 1, show that $r_{k+1}^T p_k = 0$. What is the geometric intuition behind this? (2 points)
- **d)** Show that the values of α_k obtained from exercises 1 and 2 match one another. Show that $\alpha_k = \frac{r_k^T r_k}{p_k^T A p_k}$ and that $\beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$. (3 points)

At the end we obtain the conjugate gradient descent algorithm wikipedia.org/wiki/Conjugate_gradient_method. k=0

$$\begin{aligned} x_0 &= 0 \quad \in \mathcal{K}_0 \\ r_0 &= b \quad \in \mathcal{K}_1 \\ p_0 &= b \quad \in \mathcal{K}_1 \\ \text{REPEAT} \\ \alpha_k &= \frac{r_k^T r_k}{p_k^T A p_k} \\ x_{k+1} &= x_k + \alpha_k p_k \quad \in \mathcal{K}_{k+1} \\ r_{k+1} &= r_k - \alpha_k A p_k \quad \in \mathcal{K}_{k+2} \\ \text{If } r_{k+1} &= b - A x_{k+1} \text{ is small enough, exit} \\ \beta_k &= \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} \\ p_{k+1} &= r_{k+1} + \beta_k p_k \quad \in \mathcal{K}_{k+2} \\ k &= k+1 \end{aligned}$$

Exercise 8-4

a) Consider the system of equations:

$$\begin{pmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 450 \\ 0 \\ 0 \end{pmatrix}.$$
 (10)

Use your favourite linear algebra method to solve this system. (2 points)

- **b)** Use the conjugate gradient method to solve the system of equations and compare with the system of equations before. (4 points)
- c) Either draw by hand in the x-y plane or use your favourite graphing software (e.g; geogebra.org/calculator) to graph the points x_k , gradients r_k and directions p_k . (Optional)

https://www.mpa.mpa-garching.mpg.de/~ensslin/lectures/lectures.html

This exercise sheet will be discussed during the exercises. Group 01, Wednesday 18:00 - 20:00, Theresienstr. 37, A 449, Group 02, Thursday, 10:00 - 12:00, Theresienstr. 37, A 249,