Exercise sheet 7

Exercise 7-1

You are observing a region of the sky with a photodetector. On average a number of photons λ makes it's way from the sky into your detector per time interval.
Hint: The PDF for n photon counts per time interval is given by the Poisson distribution:
$\mathcal{P}(n \mid \lambda)=\frac{\lambda^{n} \mathrm{e}^{-\lambda}}{n!}$
a) Calculate the expectation value and the standard deviation for the photon counts per time interval (3 Points).
b) Use the PDF to calculate the expectation value $\left\langle\frac{n!}{(n-q)!} \theta(n-q)\right\rangle_{(n \mid \lambda)}$ with

$$
\theta(x)= \begin{cases}1 & \text { for } x \geq 0 \tag{1}\\ 0 & \text { else }\end{cases}
$$

for any $q \in\{0,1, \ldots, n\}$, where n denotes the photon counts per time interval (2 Points).

Exercise 7-2

The goal of this exercise is to evaluate the integral

$$
\begin{equation*}
I(x)=\int_{-\infty}^{\infty} \mathrm{d} k \frac{e^{-i k x}}{k^{2}+m^{2}} \tag{2}
\end{equation*}
$$

a) For $k \in \mathbb{C}$, the integrand can diverge. Identify the poles of the integrand and sketch them in the complex plane, sketch the integration path of $k \in(-\infty, \infty)$ as well (2 points).
b) Draw a contour line that closes the integral, connecting $k=\infty$ to $k=-\infty$. The integral of the added contour line should be 0 . Illustrate why it is 0 by comparing orders in k (2 points).

Hint: You may assume $x>0$.
c) The closed integral encloses one pole. Identify its order and evaluate the integral $I(x)$ using the residue theorem,

$$
\begin{equation*}
\int_{\Gamma} f=(2 \pi i) \sum_{a \in R_{f}} \operatorname{ind}_{\Gamma}(a) \operatorname{Res}_{a} f \tag{3}
\end{equation*}
$$

where Γ is a closed contour, R_{f} are the poles of f, $\operatorname{and}_{\operatorname{ind}}^{\Gamma}(a)$ is the number of counter-clockwise windings of Γ around a, and the residue formula,

$$
\begin{equation*}
\operatorname{Res}_{a} f=\frac{1}{(n-1)!} \lim _{z \rightarrow a} \frac{\partial^{n-1}}{\partial z^{n-1}}\left[(z-a)^{n} f(z)\right] \tag{4}
\end{equation*}
$$

where n is the order of the pole a (2 points).
Hint: A clockwise winding is a negative counter-clockwise winding.

Exercise 7-3

A signal $s: \mathbb{R}^{u} \rightarrow \mathbb{R}$ with Gaussian statistics and known covariance $S=\left\langle s s^{\dagger}\right\rangle_{(s)}$ is measured via $d_{x}=s_{x}+n_{x}$. The noise follows Gaussian statistics and is homogeneous except for a slight enhancement in an area Ω, i.e., $N_{x y}=\left\langle n_{x} n_{y}\right\rangle_{(n)}=\delta(x-y)\left(1+\epsilon \Theta_{\Omega}(x)\right) \sigma^{2}$. Here, $\Theta_{\Omega}(x)=1$ for $x \in \Omega$ and $\Theta_{\Omega}(x)=0$ for $x \notin \Omega$. Consider the Wiener filter for this inference problem.
a) Calculate perturbatively to first order in ϵ the effect of the noise inhomogeneity on the real-space structure of the propagator (3 points).

Hint: The following relation for the differentiation of a regular matrix A depending on a parameter p might be useful:

$$
\begin{aligned}
& \frac{\partial}{\partial p}\left(A^{-1} A\right)=0 \\
\Leftrightarrow & 0=\frac{\partial A^{-1}}{\partial p} A+A^{-1} \frac{\partial A}{\partial p} \\
\Leftrightarrow & \frac{\partial A^{-1}}{\partial p}=-A^{-1} \frac{\partial A}{\partial p} A^{-1}
\end{aligned}
$$

b) Calculate N in its Fourier representation for general Ω and for $\Omega=[-L, L]$ in the onedimensional case (3 points).

This exercise sheet will be discussed during the exercises.
Group 01, Wednesday 18:00-20:00, Theresienstr. 37, A 449,
Group 02, Thursday, 10:00-12:00, Theresienstr. 37, A 249,
https://wwwmpa.mpa-garching.mpg.de/ ensslin/lectures/lectures.html

