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ABSTRACT
We discuss the cosmological simulation code GADGET-2, a new massively parallel TreeSPH
code, capable of following a collisionless fluid with the N-body method, and an ideal gas
by means of smoothed particle hydrodynamics (SPH). Our implementation of SPH mani-
festly conserves energy and entropy in regions free of dissipation, while allowing for fully
adaptive smoothing lengths. Gravitational forces are computed with a hierarchical multipole
expansion, which can optionally be applied in the form of a TreePM algorithm, where only
short-range forces are computed with the ‘tree’ method while long-range forces are deter-
mined with Fourier techniques. Time integration is based on a quasi-symplectic scheme where
long-range and short-range forces can be integrated with different time-steps. Individual and
adaptive short-range time-steps may also be employed. The domain decomposition used in
the parallelization algorithm is based on a space-filling curve, resulting in high flexibility and
tree force errors that do not depend on the way the domains are cut. The code is efficient in
terms of memory consumption and required communication bandwidth. It has been used to
compute the first cosmological N-body simulation with more than 1010 dark matter particles,
reaching a homogeneous spatial dynamic range of 105 per dimension in a three-dimensional
box. It has also been used to carry out very large cosmological SPH simulations that account for
radiative cooling and star formation, reaching total particle numbers of more than 250 million.
We present the algorithms used by the code and discuss their accuracy and performance using
a number of test problems. GADGET-2 is publicly released to the research community.
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1 I N T RO D U C T I O N

Cosmological simulations play an ever more important role in theo-
retical studies of the structure formation process in the Universe.
Without numerical simulations, the � cold dark matter (CDM)
model may arguably not have developed into the leading theoretical
paradigm for structure formation which it is today. This is because
direct simulation is often the only available tool to compute accurate
theoretical predictions in the highly non-linear regime of gravita-
tional dynamics and hydrodynamics. This is particularly true for the
hierarchical structure formation process with its inherently complex
geometry and three-dimensional (3D) dynamics.

The list of important theoretical cosmological results based on
simulation work is therefore quite long, including fundamental re-
sults such as the density profiles of dark matter haloes (e.g. Navarro,
Frenk & White 1996), the existence and dynamics of dark matter
substructure (e.g. Tormen 1997), the non-linear clustering proper-
ties of dark matter (e.g. Jenkins et al. 1998), the halo abundance (e.g.
Jenkins et al. 2001), the temperature and gas profiles of clusters of
galaxies (e.g. Evrard 1990), or the detailed properties of Lyman α
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absorption lines in the interstellar medium (ISM; e.g. Hernquist et al.
1996). Given that many astrophysical phenomena involve a complex
interplay of physical processes on a wide range of scales, it seems
clear that the importance of simulation methods will continue to
grow. This development is further fuelled by the rapid progress in
computer technology, which makes an ever larger dynamic range
accessible to simulation models. However, powerful computer hard-
ware is only one requirement for research with numerical simula-
tions. The other, equally important one, lies in the availability of
suitable numerical algorithms and simulation codes, capable of ef-
ficiently exploiting available computers to study physical problems
of interest, ideally in a highly accurate and flexible way, so that new
physics can be introduced easily.

This paper is about a novel version of the simulation code
GADGET, which was written and publicly released in its original form
four years ago (Springel, Yoshida & White 2001a), after which it
found widespread use in the research of many simulation groups.
The code discussed here has principal capabilities similar to the
original GADGET code. It can evolve all the systems (plus a num-
ber of additional ones) that the first version could, but it does
this more accurately, and substantially faster. It is also more flexi-
ble, more memory efficient, and more easily extendible, making it
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considerably more versatile. These improvements can be exploited
for more advanced simulations and demonstrate that progress in al-
gorithmic methods can be as important, or sometimes even more
important, than the performance increase offered by new genera-
tions of computers.

The principal structure of GADGET-2 is that of a TreeSPH code
(Hernquist & Katz 1989), where gravitational interactions are com-
puted with a hierarchical multipole expansion, and gas dynamics
is followed with smoothed particle hydrodynamics (SPH). Gas and
collisionless dark matter1 are both represented by particles in this
scheme. Note that while there are a large variety of techniques for
computing the gravitational field, the basic N-body method for rep-
resenting a collisionless fluid is the same in all cosmological codes,
so that they ultimately only differ in the errors with which they
approximate the gravitational field.

Particle-mesh (PM) methods (e.g. Klypin & Shandarin 1983;
White, Frenk & Davis 1983) are the fastest schemes for comput-
ing the gravitational field, but for scales below one to two mesh
cells, the force is heavily suppressed; as a result, this technique is
not well suited for work with high spatial resolution. The spatial
resolution can be greatly increased by adding short-range direct-
summation forces (Hockney & Eastwood 1981; Efstathiou et al.
1985), or by using additional Fourier meshes adaptively placed on
regions of interest (Couchman 1991). The mesh can also be adap-
tively refined, with the potential found in real space using relaxation
methods (Kravtsov, Klypin & Khokhlov 1997; Knebe, Green &
Binney 2001).

The hierarchical tree algorithms (Appel 1985; Barnes & Hut 1986,
hereafter BH; Dehnen 2000) follow a different approach, and have
no intrinsic resolution limit. Particularly for mass distributions with
low-density contrast, they can however be substantially slower than
Fourier-based methods. The recent development of TreePM hybrid
methods (Xu 1995) tries to combine the best of both worlds by
restricting the tree algorithm to short-range scales, while computing
the long-range gravitational force by means of a PM algorithm.
GADGET-2 offers this method as well.

Compared to gravity, much larger conceptual differences exist
between the different hydrodynamical methods employed in cur-
rent cosmological codes. Traditional ‘Eulerian’ methods discretize
space and represent fluid variables on a mesh, while ‘Lagrangian’
methods discretize mass, using, for example, a set of fluid particles
to model the flow. Both methods have found widespread applica-
tion in cosmology. Mesh-based codes include algorithms with a
fixed mesh (e.g. Cen & Ostriker 1992, 1993; Yepes et al. 1995; Pen
1998), and more recently also with adaptive meshes (e.g. Bryan &
Norman 1997; Norman & Bryan 1999; Kravtsov, Klypin & Hoffman
2002; Teyssier 2002; Quilis 2004). Lagrangian codes have almost
all employed SPH thus far (e.g. Evrard 1988; Hernquist & Katz
1989; Navarro & White 1993; Couchman, Thomas & Pearce 1995;
Katz, Weinberg & Hernquist 1996; Serna, Alimi & Chieze 1996;
Steinmetz 1996; Davé, Dubinski & Hernquist 1997; Tissera, Lambas
& Abadi 1997; Owen et al. 1998; Serna, Dominguez-Tenreiro &
Saiz 2003; Wadsley, Stadel & Quinn 2004), although this is not the
only possibility (Gnedin 1995; Whitehurst 1995).

Mesh codes offer superior resolving power for hydrodynamical
shocks, with some methods being able to capture shocks without
artificial viscosity, and with very low residual numerical viscos-
ity. However, static meshes are only poorly suited for the high dy-
namic range encountered in cosmology. Even for meshes as large

1 The stars in galaxies can also be well approximated as a collisionless fluid.

as 10243, which is a challenge at present (e.g. Cen et al. 2003; Kang
et al. 2005), individual galaxies in a cosmological volume are poorly
resolved, leaving no room for resolving internal structure such as
bulge and disc components. A potential solution is provided by new
generations of adaptive mesh refinement (AMR) codes, which are
beginning to be more widely used in cosmology (e.g. Abel, Bryan
& Norman 2002; Kravtsov, Klypin & Hoffman 2002; Refregier &
Teyssier 2002; Motl et al. 2004). Some drawbacks of the mesh re-
main however even here. For example, the dynamics is in general
not Galilean-invariant, there are advection errors, and there can be
spurious generation of entropy due to mixing.

In contrast, Lagrangian methods such as SPH are particularly well
suited to follow the gravitational growth of structure, and to automat-
ically increase the resolution in the central regions of galactic haloes,
which are the regions of primary interest in cosmology. The accurate
treatment of self-gravity of the gas in a fashion consistent with that
of the dark matter is a further strength of the particle-based SPH
method. Another fundamental difference with mesh-based schemes
is that thermodynamic quantities advected with the flow do not mix
between different fluid elements at all, unless explicitly modelled.
An important disadvantage of SPH is that the method has to rely on
an artificial viscosity for supplying the necessary entropy injection
in shocks. The shocks are broadened over the SPH smoothing scale
and not resolved as true discontinuities.

In this paper, we give a concise description of the numerical model
and the novel algorithmic methods implemented in GADGET-2, which
may also serve as a reference for the publicly released version of this
code. In addition, we measure the code performance and accuracy
for different types of problems, and discuss the results obtained for
a number of test problems, focusing in particular on gas-dynamical
simulations.

This paper is organized as follows. In Section 2, we summarize the
set of equations the code integrates forward in time. We then discuss
in Section 3 the algorithms used to compute the ‘right-hand side’ of
these equations efficiently, i.e. the gravitational and hydrodynami-
cal forces. This is followed by a discussion of the time integration
scheme in Section 4, and an explanation of the parallelization strat-
egy in Section 5. We present results for a number of test problems
in Section 6, followed by a discussion of code performance in Sec-
tion 7. Finally, we summarize our findings in Section 8.

2 BA S I C E QUAT I O N S

We here briefly summarize the basic set of equations that are stud-
ied in cosmological simulations of structure formation. These de-
scribe the dynamics of a collisionless component (dark matter or
stars in galaxies) and of an ideal gas (ordinary baryons, mostly
hydrogen and helium), both subject to and coupled by gravity in
an expanding background space. For brevity, we focus on the dis-
cretized forms of the equations, noting the simplifications that apply
for non-expanding space where appropriate.

2.1 Collisionless dynamics

The continuum limit of non-interacting dark matter is described by
the collisionless Boltzmann equation coupled to the Poisson equa-
tion in an expanding background Universe, the latter taken normally
as a Friedman–Lemaı̂tre model. Due to the high dimensionality
of this problem, these equations are best solved with the N-body
method, where phase-space density is sampled with a finite number
N of tracer particles.
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The dynamics of these particles is then described by the
Hamiltonian

H =
∑

i

p2
i

2 mi a(t)2
+ 1

2

∑
i j

mi m j ϕ(xi − x j )

a(t)
, (1)

where H = H (p1, . . . , p N , x1, . . . , x N , t). x i are comoving coor-
dinate vectors, and the corresponding canonical momenta are given
by pi = a2mi ẋi . The explicit time dependence of the Hamiltonian
arises from the evolution a(t) of the scalefactor, which is given by
the Friedman–Lemaı̂tre model.

If we assume periodic boundary conditions for a cube of size L3,
the interaction potential ϕ(x) is the solution of

∇2ϕ(x) = 4πG

[
− 1

L3
+

∑
n

δ̃(x − nL)

]
, (2)

where the sum over n = (n1, n2, n3) extends over all integer triplets.
Note that the mean density is subtracted here, so the solution corre-
sponds to the ‘peculiar potential’, where the dynamics of the system
is governed by ∇2φ(x) = 4πG[ρ(x) − ρ]. For our discretized par-
ticle system, we define the peculiar potential as

φ(x) =
∑

i

mi ϕ(x − xi ). (3)

The single particle density distribution function δ̃(x) is the Dirac δ-
function convolved with a normalized gravitational softening kernel
of comoving scale ε. For it, we employ the spline kernel (Monaghan
& Lattanzio 1985) used in SPH and set δ̃(x) = W (|x|, 2.8ε), where
W(r) is given by
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(4)

For this choice, the Newtonian potential of a point mass at zero
lag in non-periodic space is −G m/ε, the same as for a Plummer
‘sphere’ of size ε.

If desired, we can simplify to Newtonian space by setting a(t) =
1, so that the explicit time dependence of the Hamiltonian vanishes.
For vacuum boundaries, the interaction potential simplifies to the
usual Newtonian form, i.e. for point masses it is given by ϕ(x) =
−G/|x| modified by the softening for small separations.

Note that independent of the type of boundary conditions, a com-
plete force computation involves a double sum, resulting in an
N2-scaling of the computational cost. This reflects the long-range
nature of gravity, where each particle interacts with every other par-
ticle, making high-accuracy solutions for the gravitational forces
very expensive for large N. Fortunately, the force accuracy needed
for collisionless dynamics is comparatively modest. Force errors up
to ∼1 per cent tend to only slightly increase the numerical relax-
ation rate without compromising results (Hernquist, Hut & Makino
1993), provided the force errors are random. This allows the use
of approximative force computations using methods such as those
discussed in Section 3. We note however that the situation is differ-
ent for collisional N-body systems, such as star clusters. Here direct
summation can be necessary to deliver the required force accuracy, a
task that triggered the development of powerful custom-made com-
puters such as GRAPE (e.g Makino 1990; Makino et al. 2003).
These systems can then also be applied to collisionless dynamics

using a direct-summation approach (e.g. Steinmetz 1996; Makino
et al. 1997), or by combining them with tree or TreePM methods
(Fukushige, Makino & Kawai 2005).

2.2 Hydrodynamics

SPH uses a set of discrete tracer particles to describe the state of
a fluid, with continuous fluid quantities being defined by a kernel
interpolation technique (Gingold & Monaghan 1977; Lucy 1977;
Monaghan 1992). The particles with coordinates r i , velocities vi

and masses mi are best thought of as fluid elements that sample the
gas in a Lagrangian sense. The thermodynamic state of each fluid
element may be defined either in terms of its thermal energy per unit
mass, ui, or in terms of the entropy per unit mass, si. We prefer to
use the latter as the independent thermodynamic variable evolved
in SPH, for reasons discussed in full detail in Springel & Hernquist
(2002). Our formulation of SPH manifestly conserves both energy
and entropy even when fully adaptive smoothing lengths are used.
Traditional formulations of SPH, on the other hand, can violate
entropy conservation in certain situations.

We begin by noting that it is more convenient to work with an
entropic function defined by A ≡ P/ργ , instead of directly using
the entropy s per unit mass. Because A = A(s) is only a function of
s for an ideal gas, we often refer to A as ‘entropy’.

Of fundamental importance for any SPH formulation is the den-
sity estimate, which GADGET-2 does in the form

ρi =
N∑

j=1

m j W (|r i j |, hi ), (5)

where r i j ≡ r i − r j , and W (r , h) is the SPH smoothing kernel
defined in equation (4).2 In our ‘entropy formulation’ of SPH, the
adaptive smoothing lengths hi of each particle are defined such
that their kernel volumes contain a constant mass for the estimated
density, i.e. the smoothing lengths and the estimated densities obey
the (implicit) equations

4π

3
h3

i ρi = Nsphm, (6)

where Nsph is the typical number of smoothing neighbours, and m
is an average particle mass. Note that in many other formulations of
SPH, smoothing lengths are typically chosen such that the number of
particles inside the smoothing radius hi is nearly equal to a constant
value Nsph.

Starting from a discretized version of the fluid Lagrangian, we
can show (Springel & Hernquist 2002) that the equations of motion
for the SPH particles are given by

dvi

dt
= −

N∑
j=1

m j

[
fi

Pi

ρ2
i

∇i Wi j (hi ) + f j
Pj

ρ2
j

∇i Wi j (h j )

]
, (7)

where the coefficients fi are defined by

fi =
(

1 + hi

3ρi

∂ρi

∂hi

)−1

, (8)

and the abbreviation Wij(h) = W (|r i − r j |, h) has been used. The
particle pressures are given by Pi = Aiρ

γ

i . Provided there are no

2 We note that most of the literature on SPH defines the smoothing length
such that the kernel drops to zero at a distance 2h, and not at h as we have
chosen here for consistency with Springel et al. (2001a). This is only a
difference in notation without bearing on the results.
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shocks and no external sources of heat, the equations above already
fully define reversible fluid dynamics in SPH. The entropy Ai of
each particle remains constant in such a flow.

However, flows of ideal gases can easily develop discontinuities,
where entropy is generated by microphysics. Such shocks need to
be captured by an artificial viscosity in SPH. To this end, GADGET-2
uses a viscous force

dvi

dt

∣∣∣∣
visc

= −
N∑

j=1

m j
i j∇i W i j , (9)

where 
i j � 0 is non-zero only when particles approach each other
in physical space. The viscosity generates entropy at a rate

dAi

dt
= 1

2

γ − 1

ρ
γ−1
i

N∑
j=1

m j
i jvi j · ∇i W i j , (10)

transforming kinetic energy of gas motion irreversibly into heat. The
symbol W i j is here the arithmetic average of the two kernels Wij(hi)
and Wij(hj).

The Monaghan–Balsara form of the artificial viscosity
(Monaghan & Gingold 1983; Balsara 1995) is probably the most
widely employed parametrization of the viscosity in SPH codes. It
takes the form


i j =
{(−αci jµi j + βµ2

i j

)
/ρi j if vi j · r i j < 0

0 otherwise,
(11)

with

µi j = hi j vi j · r i j∣∣r i j

∣∣2 . (12)

Here, hij and ρ i j denote arithmetic means of the corresponding
quantities for the two particles i and j, with cij giving the mean sound
speed. The strength of the viscosity is regulated by the parameters α

and β, with typical values in the range α � 0.5–1.0 and the frequent
choice of β = 2 α.

Based on an analogy with the Riemann problem and using the
notion of a signal velocity v

sig
i j between two particles, Monaghan

(1997) derived a slightly modified parametrization of the viscosity,
namely the Ansatz 
i j = −(α/2) wijv

sig
i j /ρ i j . In the simplest form,

the signal velocity can be estimated as

v
sig
i j = ci + c j − 3wi j , (13)

where w i j = vi j · r i j/|r i j | is the relative velocity projected on to
the separation vector, provided the particles approach each other,
i.e. for vi j · r i j < 0; otherwise we set wij = 0. This gives a viscosity
of the form


i j = −α

2

(ci + c j − 3wi j )wi j

ρi j
, (14)

which is identical to equation (11) if one sets β = 3/2 α and re-
places wij with µi j . The main difference between the two viscosities
lies therefore in the additional factor of hij/rij that µi j carries with
respect to wij. In equations (11) and (12), this factor weights the
viscous force towards particle pairs with small separations. In fact,
after multiplying with the kernel derivative, this weighting is strong
enough to make the viscous force diverge as ∝1/rij for small pair
separations, unless µi j in equation (12) is softened at small separa-
tions by adding some fraction of h2

i j in the denominator, as is often
done in practice.

In the equation of motion, the viscosity acts like an excess pressure
P visc � (1/2)ρ2

i j
i j assigned to the particles. For the new form (14)
of the viscosity, this is given by

Pvisc � α

2
γ

[
wi j

ci j
+ 3

2

(
wi j

ci j

)2
]

Ptherm, (15)

assuming roughly equal sound speeds and densities of the two par-
ticles for the moment. This viscous pressure depends only on a
Mach-number-like quantity w/c, and not explicitly on the particle
separation or smoothing length. We found that the modified viscos-
ity (14) gives equivalent or improved results in our tests compared
to the standard formulation of equation (11). In simulations with
dissipation, this has the advantage that the occurrence of very large
viscous accelerations is reduced, so that a more efficient and sta-
ble time integration results. For these reasons, we usually adopt the
viscosity (14) in GADGET-2.

The signal-velocity approach naturally leads to a Courant-like
hydrodynamical time-step of the form

�t (hyd)
i = Ccourant hi

max j (ci + c j − 3wi j )
(16)

which is adopted by GADGET-2. The maximum is here determined
with respect to all neighbours j of particle i.

Following Balsara (1995) and Steinmetz (1996), GADGET-2 also
uses an additional viscosity-limiter to alleviate spurious angular
momentum transport in the presence of shear flows. This is done by
multiplying the viscous tensor with ( fi + fj)/2, where

fi = |∇ × v|i
|∇ · v|i + |∇ × v|i (17)

is a simple measure for the relative amount of shear in the flow
around particle i, based on standard SPH estimates for divergence
and curl (Monaghan 1992).

The above equations for the hydrodynamics were all expressed
using physical coordinates and velocities. In the actual simulation
code, we use comoving coordinates x, comoving momenta p and
comoving densities as internal computational variables, which are
related to physical variables in the usual way. Because we continue
to use the physical entropy, adiabatic cooling due to expansion of
the Universe is automatically treated accurately.

2.3 Additional physics

A number of further physical processes have already been imple-
mented in GADGET-2, and were applied to study structure formation
problems. A full discussion of this physics (which is not included
in the public release of the code) is beyond the scope of this paper.
However, we here give a brief overview of what has been done so
far and refer the reader to the cited papers for physical results and
technical details.

Radiative cooling and heating by photoionization has been im-
plemented in GADGET-2 in a similar way as in Katz et al. (1996),
i.e. the ionization balance of helium and hydrogen is computed in
the presence of an externally specified time-dependent ultraviolet
background under the assumption of collisional ionization equilib-
rium. Yoshida et al. (2003) recently added a network for the non-
equilibrium treatment of the primordial chemistry of nine species,
allowing cooling by molecular hydrogen to be properly followed.

Star formation and associated feedback processes have been mod-
elled with GADGET by a number of authors using different physi-
cal approximations. Springel (2000) considered a feedback model
based on a simple turbulent pressure term, while Kay (2004) studied
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thermal feedback with delayed cooling. A related model was also
implemented by Cox et al. (2004). Springel & Hernquist (2003a,b)
implemented a subresolution multiphase model for the treatment of
a star-forming ISM. Their model also accounts for energetic feed-
back by galactic winds, and includes a basic treatment of metal
enrichment. More detailed metal enrichment models that allow for
separate treatments of Type II and Type I supernovae while also
properly accounting for the lifetimes of different stellar populations
have been independently implemented by Tornatore et al. (2004)
and Scannapieco et al. (2005). A different, more explicit approach
to describe a multiphase ISM has been followed by Marri & White
(2003), who introduced a hydrodynamic decoupling of cold gas
and the ambient hot phase. A number of studies also used more
ad hoc models of feedback in the form of pre-heating prescriptions
(Springel, White & Hernquist 2001b; Tornatore et al. 2003; van den
Bosch, Abel & Hernquist 2003).

A treatment of thermal conduction in hot ionized gas has been
implemented by Jubelgas, Springel & Dolag (2004) and was used
to study modifications of the intracluster medium of rich clusters
of galaxies (Dolag et al. 2004c) caused by conduction. An SPH
approximation of ideal magnetohydrodynamics has been added to
GADGET-2 and was used to study deflections of ultrahigh-energy
cosmic rays in the local Universe (Dolag et al. 2004b, 2005).

Di Matteo, Springel & Hernquist (2005) and Springel, Di Matteo
& Hernquist (2005a) introduced a model for the growth of super-
massive black holes at the centres of galaxies, and studied how
energy feedback from gas accretion on to a supermassive black hole
regulates quasar activity and nuclear star formation. Cuadra et al.
(2005) added the ability to model stellar winds and studied the feed-
ing of Sgr A* by the stars orbiting in the vicinity of the centre of
the Galaxy.

Finally, non-standard dark matter dynamics has also been in-
vestigated with GADGET. Linder & Jenkins (2003) and Dolag et al.
(2004a) independently studied dark energy cosmologies. Also, both
Yoshida et al. (2000) and Davé et al. (2001) studied halo formation
with self-interacting dark matter, modelled by explicitly introducing
collisional terms for the dark matter particles.

3 G R AV I TAT I O NA L A L G O R I T H M S

Gravity is the driving force of structure formation. Its computation
thus forms the core of any cosmological code. Unfortunately, its
long-range nature and the high dynamic range posed by the struc-
ture formation problem make it particularly challenging to compute
the gravitational forces accurately and efficiently. In the GADGET-2
code, both the collisionless dark matter and the gaseous fluid are
represented as particles, allowing the self-gravity of both compo-
nents to be computed with gravitational N-body methods, which we
discuss next.

3.1 The tree algorithm

The primary method that GADGET-2 uses to achieve the required
spatial adaptivity is a hierarchical multipole expansion, commonly
called a tree algorithm. These methods group distant particles into
ever larger cells, allowing their gravity to be accounted for by means
of a single multipole force. Instead of requiring N − 1 partial forces
per particle as needed in a direct-summation approach, the gravi-
tational force on a single particle can then be computed with just
O(log N ) interactions.

In practice, the hierarchical grouping that forms the basis of the
multipole expansion is most commonly obtained by a recursive sub-
division of space. In the approach of BH, a cubical root node is used

to encompass the full mass distribution, which is repeatedly subdi-
vided into eight daughter nodes of half the side length each, until
one ends up with ‘leaf’ nodes containing single particles. Forces are
then obtained by ‘walking’ the tree, i.e. starting at the root node, a
decision is made whether or not the multipole expansion of the node
is considered to provide an accurate enough partial force (which will
in general be the case for nodes that are small and distant enough).
If the answer is ‘yes’, the multipole force is used and the walk along
this branch of the tree can be terminated; if it is ‘no’, the node is
‘opened’, i.e. its daughter nodes are considered in turn.

It should be noted that the final result of the tree algorithm will in
general only represent an approximation to the true force. However,
the error can be controlled conveniently by modifying the opening
criterion for tree nodes, because higher accuracy is obtained by
walking the tree to lower levels. Provided sufficient computational
resources are invested, the tree force can then be made arbitrarily
close to the well-specified correct force.

3.1.1 Details of the tree code

There are three important characteristics of a gravitational tree code:
the type of grouping employed, the order chosen for the multipole
expansion and the opening criterion used. As a grouping algorithm,
we prefer the geometrical BH oct-tree instead of alternatives such as
those based on nearest-neighbour pairings (Jernigan & Porter 1989)
or a binary kD-tree (Stadel 2001). The oct-tree is ‘shallower’ than the
binary tree, i.e. fewer internal nodes are needed for a given number
N of particles. In fact, for a nearly homogeneous mass distribution,
only ≈0.3 N internal nodes are needed, while for a heavily clustered
mass distribution in a cosmological simulation, this number tends to
increase to about ≈0.65 N, which is still considerably smaller than
the number of ≈N required in the binary tree. This has advantages in
terms of memory consumption. Also, the oct-tree avoids problems
due to large aspect ratios of nodes, which helps to keep the magnitude
of higher-order multipoles small. The clean geometric properties of
the oct-tree make it ideal for use as a range-searching tool, a further
application of the tree we need for finding SPH neighbours. Finally,
the geometry of the oct-tree has a close correspondence with a space-
filling Peano–Hilbert curve, a fact we exploit for our parallelization
algorithm.

With respect to the multipole order, we follow a different ap-
proach from that used in GADGET-1, where an expansion including
octopole moments was employed. Studies by Hernquist (1987) and
Barnes & Hut (1989) indicate that the use of quadrupole moments
may increase the efficiency of the tree algorithm in some situations,
and Wadsley et al. (2004) even advocate hexadecopole order as an
optimum choice. Higher order typically allows larger cell-opening
angles (i.e. for a desired accuracy, fewer interactions need to be eval-
uated). This advantage is partially compensated by the increased
complexity per evaluation and the higher tree construction and tree
storage overhead, such that the performance as a function of multi-
pole order forms a broad maximum, where the precise location of
the optimum may depend sensitively on fine details of the software
implementation of the tree algorithm.

In GADGET-2, we deliberately went back to monopole moments,
because they feature a number of distinct advantages which make
them very attractive compared to schemes that carry the expansions
to higher order. First of all, gravitational oct-trees with monopole
moments can be constructed in an extremely memory efficient way.
In the first stage of our tree construction, particles are inserted one
by one into the tree, with each internal node holding storage for
indices of eight daughter nodes or particles. Note that for leaves
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themselves, no node needs to be stored. In a second step, we com-
pute the multipole moments recursively by walking the tree once in
full. It is interesting to note that these eight indices will no longer be
needed in the actual tree walk – all that is needed for each internal
node is the information about which node would be the next one to
look at in case the node needs to be opened, or alternatively, which
is the next node in line in case the multipole moment of the node
can be used. We can hence reuse the memory used for the eight
indices and store in it the two indices needed for the tree walk, plus
the multipole moment, which in the case of monopole moments is
the mass and the centre-of-mass coordinate vector. We additionally
need the node side length, which adds up to seven variables, leaving
one variable still free, which we use however in our paralleliza-
tion strategy. In any case, this method of constructing the tree at
no time requires more than ∼0.65 × 8 × 4 � 21 bytes per particle
(assuming four bytes per variable), for a fully threaded tree. This
compares favourably with memory consumptions quoted by other
authors, even compared with the storage optimized tree construction
schemes of Dubinski et al. (2004), where the tree is only constructed
for part of the volume at a given time, or with the method of Wadsley
et al. (2004), where particles are bunched into groups, reducing the
number of internal tree nodes by collapsing ends of trees into nodes.
Note also that the memory consumption of our tree is lower than
required for just storing the phase-space variables of particles, leav-
ing aside additional variables that are typically required to control
time-stepping, or to label the particles with an identifying number.
In the standard version of GADGET-2, we do not quite realize this
optimum because we also store the geometric centre of each tree in
order to simplify the SPH neighbour search. This can in principle
be omitted for purely collisionless simulations.

Very compact tree nodes as obtained above are also highly ad-
vantageous given the architecture of modern processors, which typ-
ically feature several layers of fast ‘cache’ memory as workspace.
Computations which involve data that are already in cache can be
carried out with close to maximum performance, but access to the
comparatively slow main memory imposes large numbers of wait
cycles. Small tree nodes thus help to make better use of the avail-
able memory bandwidth, which is often a primary factor limiting
the sustained performance of a processor. By ordering the nodes
in the main memory in a special way (see Section 5.1), we can in
addition help the processor and optimize its cache utilization.

Finally, a further important advantage of monopole moments is
that they allow simple dynamical tree updates that are consistent
with the time integration scheme discussed in detail in Section 4.
GADGET-1 already allowed dynamic tree updates, but it neglected the
time variation of the quadrupole moments. This introduced a time
asymmetry, which had the potential to introduce secular integration
errors in certain situations. Note that particularly in simulations
with radiative cooling, the dynamic range of time-steps can easily
become so large that the tree construction overhead would become
dominant unless such dynamic tree update methods can be used.

With respect to the cell-opening criterion, we usually employ
a relative opening criterion similar to that used in GADGET-1, but
adjusted to our use of monopole moments. Specifically, we consider
a node of mass M and extension l at distance r for usage if

G M

r 2

(
l

r

)2

� α |a|, (18)

where |a| is the size of the total acceleration obtained in the last time-
step, and α is a tolerance parameter. This criterion tries to limit the
absolute force error introduced in each particle–node interaction by
comparing a rough estimate of the truncation error with the size
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Figure 1. Force errors of the tree code for an isolated galaxy, consisting of
a dark halo and a stellar disc. In the top panel, each line shows the fraction
of particles with force errors larger than a given value. The different line
styles are for different cell-opening criteria: the relative criterion is shown
as solid lines and the standard BH criterion as dot-dashed lines. Both are
shown for different values of the corresponding tolerance parameters, taken
from the set {0.0005, 0.001, 0.0025, 0.005, 0.01, 0.02} for α in the case of
the relative criterion, and from {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} in the case of the
opening angle θ used in the BH criterion. In the lower panel, we compare the
computational cost as a function of force accuracy. Solid lines compare the
force accuracy of the 99.9 per cent percentile as a function of computational
cost for the relative criterion (triangles) and the BH criterion (boxes). At the
same computational cost, the relative criterion always delivers somewhat
more accurate forces. The dotted lines show the corresponding comparison
for the 50 per cent percentile of the force error distribution.

of the total expected force. As a result, the typical relative force
error is kept roughly constant and, if needed, the opening criterion
adjusts to the dynamical state of the simulation to achieve this goal;
at high redshift, where peculiar accelerations largely cancel out,
the average opening angles are very small, while they can become
larger once matter clusters. Also, the opening angle varies with the
distance of the node. The net result is an opening criterion that
typically delivers higher force accuracy at a given computational
cost compared to a purely geometrical criterion such as that of BH. In
Fig. 1, we demonstrate this explicitly with measurements of the force
accuracy in a galaxy collision simulation. Note that for the first force
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computation, an estimate of the size of the force from the previous
time-step is not yet available. We then use the ordinary BH opening
criterion to obtain such estimates, followed by a recomputation of
the forces in order to have consistent accuracy for all steps.

Salmon & Warren (1994) pointed out that tree codes can produce
rather large worst-case force errors when standard opening criteria
with commonly employed opening angles are used. These errors
originate in situations where the distance to the nearest particle
in the node becomes very small. When coming very close to or
within the node, the error can even become unbounded. Our relative
opening criterion (18) may suffer such errors because we may in
principle encounter a situation where a particle falls inside a node
while still satisfying the cell-acceptance criterion. To protect against
this possibility, we impose an additional opening criterion, i.e.

|rk − ck | � 0.6 l. (19)

Here, c = (c1, c2, c3) is the geometric centre of the node, r is the
particle coordinate, and the inequality applies for each coordinate
axis k ∈ {1, 2, 3} separately. We hence require that the particle lies
outside a box about 20 per cent larger than the tree node. Tests
have shown that this robustly protects against the occurrence of
pathologically large force errors while incurring an acceptably small
increase in the average cost of the tree walk.

3.1.2 Neighbour search using the tree

We also use the BH oct-tree for the search of SPH neighbours,
following the range-search method of Hernquist & Katz (1989).
For a given spherical search region of radius hi around a target
location r i , we walk the tree with an opening criterion that examines
whether there is any geometric overlap between the current tree
node and the search region. If yes, the daughter nodes of the node
are considered in turn; otherwise, the walk along this branch of the
tree is immediately discarded. The tree walk is hence restricted to
the region local to the target location, allowing an efficient retrieval
of the desired neighbours. This use of the tree as a hierarchical
search grid makes the method extremely flexible and insensitive in
performance to particle clustering.

A difficulty arises for the SPH force loop, where the neighbour
search depends not only on hi, but also on properties of the target
particles. We here need to find all pairs with distances |r i − r j | <

max(hi, hj), including those where the distance is smaller than hj

but not smaller than hi. We solve this issue by storing in each tree
node the maximum SPH smoothing length occurring among all
particles represented by the node. Note that we update these values
consistently when the SPH smoothing lengths are redetermined in
the first part of the SPH computation (i.e. the density loop). Using
this information, it is straightforward to modify the opening criterion
such that all interacting pairs in the SPH force computation are
always correctly found.

Finally, a few notes on how we solve the implicit equation (6)
for determining the desired SPH smoothing lengths of each parti-
cle in the first place. For simplicity, and to allow a straightforward
integration into our parallel communication strategy, we find the
root of this equation with a binary bisection method. Convergence
is significantly accelerated by choosing a Newton–Raphson value
as the next guess instead of the mid-point of the current interval.
Given that we compute ∂ρ i/hi anyway for our SPH formulation,
this comes at no additional cost. Likewise, for each new time-step,
we start the iteration with a new guess for hi based on the expected
change from the velocity divergence of the flow. Because we usually
only require that equation (6) is solved to a few per cent accuracy,

finding and adjusting the SPH smoothing lengths are subdominant
tasks in the CPU time consumption of our SPH code.

3.1.3 Periodic boundaries in the tree code

The summation over the infinite grid of particle images required for
simulations with periodic boundary conditions can also be treated
in the tree algorithm. GADGET-2 uses the technique proposed by
Hernquist, Bouchet & Suto (1991) for this purpose. The global BH
tree is only constructed for the primary mass distribution, but it is
walked such that each node is periodically mapped to the closest im-
age as seen from the coordinate under consideration. This accounts
for the dominant forces of the nearest images. For each of the partial
forces, the Ewald summation method can be used to complement the
force exerted by the nearest image with the contribution of all other
images of the fiducial infinite grid of nodes. In practice, GADGET-2
uses a 3D lookup table (in one octant of the simulation box) for the
Ewald correction, as proposed by Hernquist et al. (1991).

In the first version of our code, we carried out the Ewald cor-
rection for each of the nodes visited in the primary tree walk over
nearest node images, leading to roughly a doubling of the computa-
tional cost. However, the sizes of Ewald force correction terms have
a very different distance dependence than the ordinary Newtonian
forces of tree nodes. For nodes in the vicinity of a target particle, i.e.
for separations small against the boxsize, the correction forces are
negligibly small, while for separations approaching half the box-
size they become large, eventually even cancelling the Newtonian
force. In principle, therefore, the Ewald correction only needs to be
evaluated for distant nodes with the same opening criterion as the
ordinary Newtonian force, while for nearby ones, a coarser opening
angle can be chosen. In GADGET-2 we take advantage of this and carry
out the Ewald corrections in a separate tree walk, taking the above
considerations into account. This leads to a significant reduction of
the overhead incurred by the periodic boundaries.

3.2 The TreePM method

The new version of GADGET-2 used in this study optionally allows
the pure tree algorithm to be replaced by a hybrid method consisting
of a synthesis of the PM method and the tree algorithm. GADGET-
2’s mathematical implementation of this so-called TreePM method
(Xu 1995; Bode, Ostriker & Xu 2000; Bagla 2002) is similar to that
of Bagla & Ray (2003). The potential of equation (3) is explicitly
split in Fourier space into a long-range part and a short-range part
according to φk = φ

long
k + φshort

k , where

φ
long
k = φk exp

( −k2r 2
s

)
, (20)

with rs describing the spatial scale of the force split. This long-range
potential can be computed very efficiently with mesh-based Fourier
methods. Note that if rs is chosen slightly larger than the mesh scale,
force anisotropies that exist in plain PM methods can be suppressed
to essentially arbitrarily small levels.

The short-range part of the potential can be solved in real space
by noting that for r s 	 L the short-range part of the real-space
solution of equation (3) is given by

φshort(x) = −G
∑

i

mi

ri
erfc

(
ri

2rs

)
. (21)

Here, ri = min(|x − r i − nL|) is defined as the smallest distance
of any of the images of particle i to the point x. Because the com-
plementary error function rapidly suppresses the force for distances
large compared to rs (the force drops to about 1 per cent of its
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Newtonian value for r � 4.5 rs), only this nearest image has any
chance to contribute to the short-range force.

The short-range force corresponding to equation (21) can now be
computed by the tree algorithm, except that the force law is modi-
fied by a short-range cut-off factor. However, the tree only needs to
be walked in a small spatial region around each target particle, and
no corrections for periodic boundary conditions are required. To-
gether, these can result in a very substantial performance improve-
ment. In addition, one typically gains accuracy in the long-range
force, which is now basically exact, and not an approximation as
in the tree method. We stress that in our approach for the TreePM
method there is one global, fully threaded tree that encompasses the
whole simulation volume, and that the TreePM method is applied
throughout the volume in the same fashion. The force resolution is
hence equal everywhere, unlike in some earlier implementations of
the TreePM method (e.g. Xu 1995; Bode & Ostriker 2003). Also
note that the TreePM approach maintains all of the most important
advantages of the tree algorithm, namely its insensitivity to cluster-
ing, its essentially unlimited dynamic range, and its precise control
about the softening scale of the gravitational force.

3.2.1 Details of the TreePM algorithm

To compute the PM part of the force, we use a clouds-in-cells
(CIC) assignment (Hockney & Eastwood 1981) to construct the
mass density field on to the mesh. We carry out a discrete Fourier
transform of the mesh, and multiply it with the Green func-
tion for the potential in periodic boundaries, −4πG/k2, mod-
ified with the exponential truncation of the short-range force.
We then deconvolve for the CIC kernel by dividing twice with
sinc2(kxL/2Ng) sinc2(kyL/2Ng) sinc2(kzL/2Ng). One deconvolution
corrects for the smoothing effect of the CIC in the mass assignment,
the other for the force interpolation. After performing an inverse
Fourier transform, we then obtain the gravitational potential on the
mesh.

We approximate the forces on the mesh by finite differencing the
potential, using the four-point differencing rule

∂φ

∂x

∣∣∣∣
i jk

= 1

�x

[
2

3
(φi+1, j,k − φi−1, j,k)

− 1

12
(φi+2, j,k − φi−2, j,k)

]
(22)

which offers order O(�x4) accuracy, where �x = L/N mesh is the
mesh spacing. It would also be possible to carry out the differentia-
tion in Fourier space, by pulling down a factor −ik and obtaining the
forces directly instead of the potential. However, this would require
an inverse Fourier transform separately for each coordinate, i.e. three
instead of one, with little (if any) gain in accuracy compared to the
four-point formula.

Finally, we interpolate the forces to the particle positions using
again a CIC, for consistency. Note that the fast Fourier transforms
(FFTs) required here can be efficiently carried out using real-to-
complex transforms and their inverse, which saves memory and
execution time compared to fully complex transforms.

In Fig. 2, we illustrate the spatial decomposition of the force and
show the force error of the PM scheme. This has been computed
by randomly placing a particle of unit mass in a periodic box, and
then measuring the forces obtained by the simulation code for a
set of randomly placed test particles. We compare the force to the
theoretically expected exact force, which can be computed by Ewald
summation over all periodic images, and then by multiplying with
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Figure 2. Force decomposition and force error of the TreePM scheme.
The top panel illustrates the size of the short-range (dot-dashed) and long-
range (solid) forces as a function of distance in a periodic box. The spatial
scale rs of the split is marked with a vertical dashed line. The bottom panel
compares the TreePM force with the exact force expected in a periodic box.
For separations of the order of the mesh scale (marked by a vertical dotted
line), maximum force errors of 1–2 per cent due to the mesh anisotropy arise,
but the rms force error is well below 1 per cent even in this range, and the
mean force tracks the correct result accurately. If a larger force-split scale is
chosen, the residual force anisotropies can be further reduced, if desired.

the pre-factor

fl = 1 − erfc

(
r

2 rs

)
− r√

πrs
exp

(
− r 2

4 r 2
s

)
, (23)

which takes out the short-range force, exactly the part that will
be supplied by the short-range tree walk. The force errors of the
PM force are mainly due to mesh anisotropy, which shows up on
scales around the mesh size. However, thanks to the smoothing of
the short-range force and the deconvolution of the CIC kernel, the
mean force is very accurate, and the rms force error due to mesh
anisotropy is well below 1 per cent. Note that these force errors com-
pare favourably to those reported by P3M codes (e.g. Efstathiou et al.
1985). Also, note that in the above formalism, the force anisotropy
can be reduced further to essentially arbitrarily small levels by sim-
ply increasing rs, at the expense of slowing down the tree part of
the algorithm. Finally we remark that while Fig. 2 characterizes the
magnitude of PM force errors due to a single particle, it is not yet
a realistic error distribution for a real mass distribution. Here the
PM force errors on the mesh scale can partially average out, while
there can be additional force errors from the tree algorithm on short
scales.
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3.2.2 TreePM for ‘zoom’ simulations

GADGET-2 is capable of applying the PM algorithm also for non-
periodic boundary conditions. Here, a sufficiently large mesh needs
to be used such that the mass distribution completely fits in one
octant of the mesh. The potential can then be obtained by a real-
space convolution with the usual 1/r kernel of the potential, and
this convolution can be efficiently carried out using FFTs in Fourier
space. For simplicity, GADGET obtains the necessary Green function
by simply Fourier transforming 1/r once, and storing the result in
memory.

However, it should be noted that the four-point differencing of the
potential requires that there are at least two correct potential values
on either side of the region that is actually occupied by particles.
Because the CIC assignment/interpolation involves two cells, we
therefore have the following requirement for the minimum dimen-
sion N mesh of the employed mesh:

(Nmesh − 5)d � L. (24)

Here, L is the spatial extension of the region occupied by particles
and d is the size of a mesh cell. Recall that due to the necessary zero
padding, the actual dimension of the FFT that will be carried out is
(2N mesh)3.

The code is also able to use a two-level hierarchy of FFT meshes.
This was designed for ‘zoom simulations’, which focus on a small
region embedded in a much larger cosmological volume. Some of
these simulations can feature a rather large dynamic range, being as
extreme as putting much more than 99 per cent of the particles in
less than 10−10 of the volume (Gao et al. 2005). Here, the standard
TreePM algorithm is of little help because a mesh covering the full
volume would have a mesh size still so large that the high-resolution
region would fall into one or a few cells, so that the tree algorithm
would effectively degenerate to an ordinary tree method within the
high-resolution volume.

One possibility to improve upon this situation is to use a second
FFT mesh that covers the high-resolution region, such that the long-
range force is effectively computed in two steps. Adaptive mesh
placement in the AP3M code (Couchman et al. 1995) follows a
similar scheme. GADGET-2 allows the use of such a secondary mesh
level and places it automatically, based on a specification of which
of the particles are ‘high-resolution particles’. However, there are a
number of additional technical constraints in using this method. The
intermediate-scale FFT works with vacuum boundaries, i.e. the code
will use zero padding and a FFT of size (2N mesh)3 to compute it. If
LHR is the maximum extension of the high-resolution zone (which
may not overlap with the boundaries of the box in case the base
simulation is periodic), then condition (24) for the minimum high-
resolution cell size applies. However, in addition, this intermediate-
scale FFT must properly account for the part of the short-range force
that complements the long-range FFT of the whole box, i.e. it must
be able to properly account for all mass in a sphere of size Rcut

around each of the high-resolution particles. There must hence be at
least a padding region of size Rcut still covered by the mesh octant
used for the high-resolution zone. Because of the CIC assignment,
this implies the constraint L HR + 2R cut � d HR(N mesh − 1). This
limits the dynamic range one can achieve with a single additional
mesh level. In fact, the high-resolution cell size must satisfy

dHR � max

(
LHR + 2Rcut

Nmesh − 1
,

LHR

Nmesh − 5

)
. (25)

For our typical choice of R cut = 4.5 × rs = 1.25 × 4.5 × d LR, this
means that the high-resolution mesh size cannot be made smaller
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Figure 3. Force decomposition and force error of the TreePM scheme in
the case when two meshes are used (‘zoom simulations’). The top panel
illustrates the strength of the short-range (dot-dashed), intermediate-range
(thick solid) and long-range (solid) forces as a function of distance in a
periodic box. The spatial scales of the two splits are marked with vertical
dashed lines. The bottom panel shows the error distribution of the PM force.
The outer matching region exhibits a very similar error characteristic as the
inner match of tree and PM force. In both cases, for separations of the order
of the fine or coarse mesh scale (dotted lines), respectively, force errors of up
to 1–2 per cent arise, but the rms force error remains well below 1 per cent,
and the mean force tracks the correct result accurately.

than d HR � 10 d LR/(N mesh − 1), i.e. at least slightly more than
10 low-resolution mesh cells must be covered by the high-resolution
mesh. Nevertheless, provided there are a very large number of par-
ticles in a quite small high-resolution region, the resulting reduction
of the tree walk time can outweigh the additional cost of performing
a large, zero-padded FFT for the high-resolution region.

In Fig. 3, we show the PM force error resulting for such a two-
level decomposition of the PM force. We here placed a particle of
unit mass randomly inside a high-resolution region of side length
1/20 of a periodic box. We then measured the PM force accuracy of
GADGET-2 by randomly placing test particles. Particles that were
falling inside the high-resolution region were treated as high-
resolution particles such that their PM force consists of two FFT
contributions, while particles outside the box receive only the long-
range FFT force. In real simulations, the long-range forces are de-
composed in an analogous way. With respect to the short-range
force, the tree is walked with different values for the short-range
cut-off, depending on whether a particle is characterized as belong-
ing to the high-resolution zone or not. Note however that only one
global tree is constructed containing all the mass. The top panel of
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Fig. 3 shows the contributions of the different force components as
a function of scale, while the bottom panel gives the distribution of
the PM force errors. The largest errors occur at the matching regions
of the forces. For realistic particle distributions, a large number of
force components contribute, further reducing the typical error due
to averaging.

4 T I M E I N T E G R AT I O N

4.1 Symplectic nature of the leapfrog

Hamiltonian systems are not robust in the sense that they are not
structurally stable against non-Hamiltonian perturbations. Numer-
ical approximations for the temporal evolution of a Hamiltonian
system obtained from an ordinary numerical integration method
(e.g. Runge–Kutta) in general introduce non-Hamiltonian perturba-
tions, which can completely change the long-term behaviour. Unlike
dissipative systems, Hamiltonian systems do not have attractors.

The Hamiltonian structure of the system can be preserved during
the time integration if each step of it is formulated as a canon-
ical transformation. Because canonical transformations leave the
symplectic two-form invariant (equivalent to preserving Poincaré
integral invariants, or stated differently, to preserving phase space),
such an integration scheme is called symplectic (e.g. Hairer, Lubich
& Wanner 2002). Note that the time evolution of a system can be
viewed as a continuous canonical transformation generated by the
Hamiltonian. If an integration step is the exact solution of a (partial)
Hamiltonian, it represents the result of a phase-space conserving
canonical transformation and is hence symplectic.

We now note that the Hamiltonian of the usual N-body problem
is separable in the form

H = Hkin + Hpot. (26)

In this simple case, the time-evolution operators for each of the
parts Hkin and Hpot can be computed exactly. This gives rise to the
following ‘drift’ and ‘kick’ operators (Quinn et al. 1997)

Dt (�t) :




pi �→ pi

xi �→ xi + pi

mi

∫ t+�t

t

dt

a2

(27)

Kt (�t) :




xi �→ xi

pi �→ pi + f i

∫ t+�t

t

dt

a

(28)

where

f i = −
∑

j

mi m j
∂φ(xi j )

∂xi

is the force on particle i.
Note that both Dt and Kt are symplectic operators because they

are exact solutions for arbitrary �t for the canonical transformations
generated by the corresponding Hamiltonians. A time integration
scheme can now be derived by the idea of operator splitting. For
example, one can try to approximate the time evolution operator
U (�t) for an interval �t by

Ũ (�t) = D

(
�t

2

)
K (�t) D

(
�t

2

)
, (29)

or

Ũ (�t) = K

(
�t

2

)
D(�t) K

(
�t

2

)
, (30)

which correspond to the well-known drift–kick–drift (DKD) and
kick–drift–kick (KDK) leapfrog integrators. Both of these integra-
tion schemes are symplectic, because they are a succession of sym-
plectic phase-space transformations. In fact, Ũ generates the exact
time evolution of a modified Hamiltonian H̃ . Using the Baker–
Campbell–Hausdorff identity for expanding U and Ũ , we can in-
vestigate the relation between H̃ and H. Writing H̃ = H + Herr, we
find (Saha & Tremaine 1992)

Herr = �t2

12

{
{Hkin, Hpot}, Hkin + 1

2
Hpot

}
+ O(�t4) (31)

for the KDK leapfrog, where ‘{ }’ denote Poisson brackets. Provided
H err 	 H , the evolution under H̃ will be typically close to that under
H. In particular, most of the Poincaré integral invariants of H̃ can be
expected to be close to those of H, so that the long-term evolution
of H̃ will remain qualitatively similar to that of H. If H is time-
invariant and conserves energy, then H̃ will be conserved as well.
For a periodic system, this will then usually mean that the energy in
the numerical solution oscillates around the true energy, but there
cannot be a long-term secular trend.

We illustrate these surprising properties of the leapfrog in Fig. 4.
We show the numerical integration of a Kepler problem of high ec-
centricity e = 0.9, using second-order accurate leapfrog and Runge–
Kutta schemes with fixed time-step. There is no long-term drift in
the orbital energy for the leapfrog result (top panel); only a small
residual precession of the elliptical orbit is observed. On the other
hand, the Runge–Kutta integrator, which has formally the same error
per step, catastrophically fails for an equally large time-step (mid-
dle panel). Already after 50 orbits the binding energy has increased
by ∼30 per cent. If we instead employ a fourth-order Runge–Kutta
scheme using the same time-step (bottom panel), the integration is
only marginally more stable, giving now a decline of the binding
energy by ∼40 per cent over 200 orbits. Note however that such
a higher-order integration scheme requires several force computa-
tions per time-step, making it computationally much more expensive
for a single step than the leapfrog, which requires only one force
evaluation per step. The underlying mathematical reason for the re-
markable stability of the leapfrog integrator observed here lies in its
symplectic properties.

4.2 Individual and adaptive time-steps

In cosmological simulations, we are confronted with a large dynamic
range in time-scales. In high-density regions, such as at the centres
of galaxies, orders of magnitude smaller time-steps are required than
in low-density regions of the intergalactic medium, where a large
fraction of the mass resides. Evolving all particles with the smallest
required time-step hence implies a substantial waste of computa-
tional resources. An integration scheme with individual time-steps
tries to cope with this situation more efficiently. The principal idea is
to compute forces only for a certain group of particles in a given kick
operation, with the other particles being evolved on larger time-steps
and being ‘kicked’ more rarely.

Unfortunately, due to the pairwise coupling of particles, a for-
mally symplectic integration scheme with individual time-steps is
not possible, simply because the potential part of the Hamiltonian
is not separable. However, we can partition the potential between
two particles into a long-range part and a short-range part, as we
have done in the TreePM algorithm. This leads to a separation of
the Hamiltonian into

H = Hkin + Hsr + Hlr. (32)
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Figure 4. A Kepler problem of high eccentricity evolved with different
simple time integration schemes, using an equal time-step in all cases. Even
though the leapfrog and the second-order Runge–Kutta produce comparable
errors in a single step, the long-term stability of the integration is very
different. Even a computationally much more expensive fourth-order Runge–
Kutta scheme, with a smaller error per step, performs dramatically worse
than the leapfrog in this problem.

Figure 5. Schematic illustration of the short- and long-range time-stepping
used by GADGET-2. The code always drifts the whole particle system to the
next time when a force computation is required. At that time, ‘kicks’ (i.e.
changes of the particle momenta) are applied based on short-range or long-
range forces, or on both.

We can now easily obtain symplectic integrators as a generalization
of the ordinary leapfrog schemes by ‘subcycling’ the evolution under
H kin + H sr (Duncan, Levison & Lee 1998). For example, we can
consider

Ũ (�t) = K lr
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)
D

(
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)
Ksr

(
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)]m

K lr

(
�t

2

)
(33)

where m is a positive integer. This is the scheme GADGET-2 uses
for integrating simulations run with the TreePM algorithm. The
long-range PM force has a comparatively large time-step, which is
sufficient for the slow time variation of this force. Also, we always
evaluate this force for all particles. The evolution under the short-
range force, however, which varies on shorter time-scales, is carried
out on a power of two subdivided time-scale. Here, we optionally
also allow particles to have individual time-steps, even though this
perturbs the symplectic nature of the integration (see below). Note
that unlike the PM algorithm, tree forces can be easily computed
for a small fraction of the particles, at a computational cost that is
to first order strictly proportional to the number of particles con-
sidered. This is true as long as the subfraction is not so small that
tree construction overhead becomes significant. PM forces, on the
other hand, are either ‘all’ or ‘nothing’. The above decomposition
is hence ideally adjusted to these properties.

Note that despite the somewhat complicated appearance of equa-
tion (33), the integration scheme is still a simple alternation of drift
and kick operators. In practice, the simulation code simply needs
to drift the whole particle system to the next synchronization point
where a force computation is necessary. There, a fraction of the par-
ticles receive a force computation and their momenta are updated
accordingly, as illustrated in Fig. 5. Then the system is drifted to the
next synchronization point.

As we have discussed, the integration is no longer symplectic in
a formal sense when individual short-range time-steps are chosen
for different particles. However, in the limit of collisionless dynam-
ics, we can argue that the particle number is so large that particles
effectively move in a collective potential, where we assume that
any force between two particles is always much smaller than the
total force. In this desired limit, two-body collisions become unim-
portant, and the motion of particles is to good approximation col-
lisionless. We can then approximate the particles as moving quasi-
independently in their collective potential, which we may describe
by a global potential �(x, t). Obviously, in this approximation the
Hamiltonian separates into a sum of single particle Hamiltonians,
where we have now hidden their coupling in the collective potential
�(x, t). Provided we follow the evolution of each particle accu-
rately in this fiducial collective potential �(x, t), the evolution of
the potential itself will also be faithful, justifying the integration
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Figure 6. A Kepler problem of high eccentricity integrated with leapfrog
schemes using a variable time-step from step to step, based on the �t ∝
1/

√|a| criterion commonly employed in cosmological simulations. As a
result of the variable time-steps, the integration is no longer manifestly time
reversible, and long-term secular errors develop. Interestingly, the error in
the KDK variant grows four times slower than in the DKD variant, despite
being of equal computational cost.

of particles with individual time-steps in an N-body system that
behaves collisionlessly. While not formally being symplectic, the
evolution can then be expected to reach comparable accuracy to a
phase-space conserving symplectic integration.

Treating the potential as constant for the duration of a kick, each
particle can be integrated by a sequence of KDK leapfrogs, which
may have a different time-step from step to step. Note that changing
the time-step in the leapfrog from step to step does not destroy the
simplecticity of the integrator, because the implied transformation is
constructed from steps which are simplectic individually. However,
what we find in practice is that the superior long-term stability of
periodic motion is typically lost. This is because each time the time-
step is changed, the error Hamiltonian appearing in equation (31)
is modified. This introduces an artificial temporal dependence into
the numerical Hamiltonian which is not in phase with the orbit itself
because the time-step criterion usually involves information from
the previous time-step. The associated time asymmetry destroys the
formal time reversibility of the integration, and the phase lag of the

time-step cycle in each orbit produces a secular evolution. We illus-
trate this behaviour in Fig. 6 for an integration of the Kepler problem
considered earlier, but this time using a leapfrog with an adaptive
time-step according to �t ∝ 1/

√|a|, where a is the acceleration of
the last time-step. Interestingly, while being equivalent for a fixed
time-step, the DKD and KDK leapfrogs behave quite differently in
this test. For the same computational effort, the energy error grows
four times as fast in the DKD scheme compared with the KDK
scheme. This is simply because the effective time asymmetry in the
DKD scheme is effectively twice as large. To see this, consider what
determines the size of a given time-step when integrating forward
or backwards in time. In the DKD scheme, the relevant acceleration
that enters the time-step criterion stems from a moment that lies half
a time-step before or behind the given step. As a result, there is a
temporal lapse of two time-steps between forward and backwards
integration. For the KDK, the same consideration leads only to a
temporal asymmetry of one time-step, half as large.

The KDK scheme is hence clearly superior once we allow for
individual time-steps. It is also possible to try to recover time re-
versibility more precisely. Hut, Makino & McMillan (1995) discuss
an implicit time-step criterion that depends on both the beginning
and end of the time-step, and similarly Quinn et al. (1997) dis-
cuss a binary hierarchy of trial steps that serves a similar purpose.
However, these schemes are computationally impractical for large
collisionless systems. However, fortunately, here the danger to build
up large errors by systematic accumulation over many periodic or-
bits is much smaller, because the gravitational potential is highly
time-dependent and the particles tend to make comparatively few
orbits over a Hubble time.

In GADGET-2, a time-step criterion for collisionless particles of the
form

�tgrav = min

[
�tmax,

(
2 η ε

|a|

)1/2
]

(34)

is adopted, where η is an accuracy parameter, ε gives the gravita-
tional softening and a is the acceleration of the particle. The max-
imum allowed time-step is given by �t max, and is usually set to a
small fraction of the dynamical time of the system under study. In
cosmological simulations, we choose the logarithm of the expan-
sion factor as a time integration variable, then �t max corresponds
to a fixed fraction of the instantaneous Hubble time. It is possible
that there are more efficient time-step criteria than equation (34) for
collisionless cosmological simulations but, as Power et al. (2003)
have shown, criterion (34) produces quite robust results, while other
simple criteria such as those suggested by Springel et al. (2001a)
have failed to show any clear advantage. We therefore adopt cri-
terion (34) for now, but note that the time-step criterion can be
easily changed in the code if desired. For SPH particles, we extend
the time-step criterion by the Courant condition (16), and pick the
smaller of the two. When the TreePM scheme is used, the time-step
criterion (34) only applies to the short-range dynamics governed by
the gravitational tree forces. The size of the long-range PM step is
instead controlled by �t max. If needed, the code reduces �t max in
the course of a simulation such that the particles can travel at most a
small fraction of the mesh size with the rms particle velocity during
one step.

In the normal integration mode of GADGET-2, we discretize the
time-steps in a power of two hierarchy, where all time-steps are a
power of two subdivision of a global time-step. Particles may always
move to a smaller time-step, but to a larger one only every second
step, when this leads to synchronization with the higher time-step
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hierarchy. The level of synchronization achieved by this is beneficial
for minimizing the required number of particle drifts and tree con-
structions. Alternatively, the code also allows a more flexible way to
populate time-steps, where time-steps are discretized as integer mul-
tiples of the minimum time-step occurring among the particle set.
This has the advantage of producing a more homogeneous distribu-
tion of particles across the time-line, which can simplify work-load
balancing.

4.3 Time integration scheme of SPH particles

For gas particles, similar considerations apply in principle, because
in the absence of viscosity, SPH can also be formulated as a Hamilto-
nian system. However, because shocks occur in any non-trivial flow,
hydrodynamics will in practice always be irreversible; hence, the
long-term integration aspects of Hamiltonian systems do not apply
as prominently here. Also, in systems in hydrodynamic equilibrium
the gas particles do not move, and hence do not tend to accumulate
errors over many orbits as in dynamical equilibrium. However, if
SPH particles are cold and rotate in a centrifugally supported disc,
long-term integration aspects can become important again. So it is
desirable to treat the kinematics of SPH particles in close analogy
to that of the collisionless particles.

The reversible part of hydrodynamics can be described by adding
the thermal energy to the Hamiltonian, i.e.

Htherm = 1

γ − 1

∑
i

mi Aiρ
γ−1
i . (35)

Note that the SPH smoothing lengths are implicitly given by equa-
tion (6), i.e. the thermal energy depends only on the entropy per unit
mass, and the particle coordinates. Hence the same considerations
apply as for the collisionless leapfrog, and as long as there is no en-
tropy production included, time integration is fully time reversible.
This is actually different to mesh codes, which in non-trivial flows
always produce some entropy due to mixing, even when the fluid
motion should in principle be fully adiabatic. These errors arise from
the advection over the mesh, and are absent in the above formulation
of SPH.

5 PA R A L L E L I Z AT I O N S T R AT E G I E S

There are a number of different design philosophies for construct-
ing powerful supercomputers. So-called vector machines employ
particularly potent CPUs, which can simultaneously carry out com-
putational operations on whole arrays of floating point numbers.
However, not all algorithms can easily exploit the full capabilities
of such vector processors. It is easier to use scalar architectures, but
here large computational throughput is only achieved by the simul-
taneous use of a large number of processors. The goal is to let these
CPUs work together on the same problem, thereby reducing the
time to solution and allowing larger problem sizes. Unfortunately,
the required parallelization of the application program is not an easy
task in general.

On symmetric multiprocessing (SMP) computers, several scalar
CPUs share the same main memory, so that time-intensive loops
of a computation can be distributed easily for parallel execution
on several CPUs using a technique called threading. The code for
creation and destruction of threads can be generated automatically
by sophisticated modern compilers, guided by hints inserted into the
code in the form of compiler directives (e.g. based on the OpenMP
standard). The primary advantage of this method lies in its ease of
use, requiring few (if any) algorithmic changes in existing serial

code. A disadvantage is that the compiler-assisted parallelization
may not always produce an optimum result and, depending on the
code, sizable serial parts may remain. A more serious limitation
is that this technique prevents one from using processor numbers
and memory larger than available on a particular SMP computer.
Also, such shared-memory SMP computers tend to be substantially
more expensive than a set of single computers with comparable
performance, with the price tag quickly rising the more CPUs are
contained within one SMP computer.

A more radical approach to parallelization is to treat different
scalar CPUs as independent computers, each of them having their
own separate physical memory, and each of them running a separate
instance of the application code. This approach requires extension
of the program with instructions that explicitly deal with the neces-
sary communication between the CPUs to split up the computational
work and to exchange partial results. Memory is distributed in this
method. In order to allow a scaling of the problem size with the total
available memory, each CPU should only store a fraction of the total
data of the problem in its own memory. Successful implementation
of this paradigm therefore requires substantial algorithmic changes
compared to serial programs and, depending on the problem, a con-
siderably higher complexity than in corresponding serial codes may
result. However, such massively parallel programs have the poten-
tial to be scalable up to very large processor number, and to exploit
the combined performance of the CPUs in a close to optimum fash-
ion. Also, such codes can be run on computers of comparatively low
cost, such as clusters of ordinary PCs.

GADGET-2 follows this paradigm of a massively parallel simu-
lation code. It contains instructions for communication using the
standardized Message Passing Interface (MPI). The code itself was
deliberately written using the language C (following the ANSI stan-
dard) and the open-source libraries GSL and FFTW. This results in
a very high degree of portability to the full family of UNIX systems,
without any reliance on special features of proprietary compilers.
The parallelization algorithms of the code are flexible enough to
allow its use on an arbitrary number of processors, including just
one. As a result GADGET-2 can be run on a large variety of machines,
ranging from a laptop to clusters of the most powerful SMP comput-
ers presently available. In the following, we describe in more detail
the parallelization algorithms employed by the code.

5.1 Domain decomposition and Peano–Hilbert order

Because large cosmological simulations are often memory-bound,
it is essential to decompose the full problem into parts that are suit-
able for distribution to individual processors. A commonly taken
approach in the gravitational N-body/SPH problem is to decom-
pose the computational volume into a set of domains, each assigned
to one processor. This has often been realized with a hierarchical
orthogonal bisection, with cuts chosen to approximately balance the
estimated work for each domain (e.g. Dubinski 1996). However, a
disadvantage of some existing implementations of this method is
that the geometry of the tree eventually constructed for each do-
main depends on the geometry of the domains themselves. Because
the tree force is only an approximation, this implies that individual
particles may experience a different force error when the number
of CPUs is changed, simply because this in general modifies the
way the underlying domains are cut. Of course, provided the typical
size of force errors is sufficiently small, this should not pose a severe
problem for the final results of collisionless simulations. However, it
complicates code validation, because individual particle orbits will
then depend on the number of processors employed. Also, there is
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the possibility of subtle correlations of force errors with domain
boundaries, which could especially in the very high redshift regime
show up as systematic effects.

Here we propose a new scheme for domain decomposition that
guarantees a force that is independent of the processor number. It
also avoids other shortcomings of the orthogonal bisection, such
as high aspect ratios of domains. Our method uses a space-filling
fractal, the Peano–Hilbert curve, to map 3D space on to a one-
dimensional (1D) curve. The latter is then simply chopped off into
pieces that define the individual domains. The idea of using a space-
filling curve for the domain decomposition of a tree code was first
proposed by Warren & Salmon (1993, 1995). They however used
Morton ordering for the underlying curve, which produces irregu-
larly shaped domains.

In Fig. 7, we show examples of the Peano–Hilbert curve in two
and three dimensions. The Peano curve in two dimensions can be
constructed recursively from its basic ‘U’-shaped form that fills a
2 × 2 grid, together with the rules that determine the extension of
this curve on to a 4 × 4 grid. As can be seen in Fig. 7, these rules
mean that the bar of the ‘U’ has to be replaced with two smaller
copies of the underlying ‘U’, while at the two ends, rotated and
mirrored copies have to be placed. By repeated application of these
rules we can construct an area-filling curve for arbitrarily large grids
of size 2n × 2n . In three dimensions, a basic curve defined on a
2 × 2 × 2 grid can be extended in an analogous way, albeit with
somewhat more complicated mapping rules, to the 3D space-filling
curve shown in Fig. 7.

An interesting property of these space-filling curves is their self-
similarity. Suppose we describe the Peano–Hilbert curve that fills a
2n × 2n × 2n grid with a one-to-one mapping pn(i , j , k), where the
value pn ∈ [0, . . . , n3 − 1] of the function is the position of the cell (i ,
j , k) along the curve. Then we have pn/2 (i/2, j/2, k/2) = pn(i , j ,
k)/8, where all divisions are to be understood as integer divisions.
We can hence easily ‘contract’ a given Peano–Hilbert curve and
again obtain one of lower order. This is a property we exploit in the
code.

A second important property is that points that are close along
the 1D Peano–Hilbert curve are in general also close in 3D space,

Figure 7. Space-filling Peano–Hilbert curve in two (bottom) and three (top) dimensions.

i.e. the mapping preserves locality. If we simply cut a space-filling
Peano curve into segments of a certain length, we obtain a do-
main decomposition which has the property that the spatial domains
are simply connected and quite ‘compact’, i.e. they tend to have
small surface-to-volume ratios and low aspect ratios, a highly desir-
able property for reducing communication costs with neighbouring
domains.

Thirdly, we note that there is a close correspondence between the
spatial decomposition obtained by a hierarchical BH oct-tree, and
that obtained from segmenting a Peano–Hilbert curve. For example,
consider a fiducial Peano–Hilbert curve that fills a box (the root
node), encompassing the whole particle set. Cutting this curve into
eight equally long pieces, and then recursively cutting each segment
into eight pieces again, we regenerate the spatial oct-tree structure of
the corresponding BH tree. If we hence assign an arbitrary segment
of the Peano–Hilbert curve to a processor, the corresponding volume
is compatible with the node structure of a fiducial global BH tree
covering the full volume, i.e. we effectively assign a collection of
branches of this tree to each processor. Because of this property, we
obtain a tree whose geometry is not affected by the parallelization
method, and the results for the tree force become strictly independent
of the number of processors used.

We illustrate these concepts in Fig. 8, where we show a sketch of
a global BH tree and its decomposition into domains by a Peano–
Hilbert curve. For simplicity, we show the situation in two dimen-
sions. Note that the sizes of the largest nodes assigned to each proces-
sor in this way need not all be of the same size. Instead, the method
can quite flexibly adjust to highly clustered particle distributions, if
required.

In order to carry out the domain decomposition in practice, we first
compute a Peano–Hilbert ‘key’ for each particle. This is simply the
integer returned by the function p, where the coordinates of particles
are mapped on to integers in the range [0, 2n − 1]. The construction
of the Peano–Hilbert key can be carried out with a number of fast bit-
shift operations, and short lookup tables that deal with the different
orientations of the fundamental figure. We typically use n = 20,
such that the key fits into a 64-bit-long integer, giving a dynamic
range of the Peano–Hilbert curve of ∼106 per dimension. This is
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Figure 8. Illustration of the relation between the BH oct-tree and a domain decomposition based on a Peano–Hilbert curve. For clarity, the sketch is drawn in
two dimensions. The fiducial Peano curve associated with the simulation volume visits each cell of a regular mesh exactly once. The simulation volume is cut
into domains by segmenting this curve at arbitrary intermediate points on cell boundaries. This generates a rule for distributing the particle set on to individual
processors. Because the geometric structure of the BH tree is commensurable with the mesh, each mesh cell corresponds to a certain branch of a fiducial global
BH tree. These branches then reside entirely on single processors. In addition, each processor constructs a ‘top-level tree’ where all nodes at higher level are
represented. The missing data on other processors is marked using ‘pseudo-particles’ in this tree.

enough for all present applications but could be easily extended if
needed.

In principle, we would then like to sort these keys and divide the
sorted list into segments of approximately constant work-load. How-
ever, because the particle data (including the keys) are distributed,
a global sort is a non-trivial operation. We solve this problem using
an adaptive hashing method. Each processor first considers only its
locally sorted list of keys and uses it to recursively construct a set of
segments (by chopping segments into eight pieces of equal length)
until each holds at most sN/N cpu particles, where we usually take
s � 0.1. This operation partitions the load on each processor into
a set of reasonably fine pieces, but the total number of these seg-
ments remains small, independent of the clustering state of matter.
Next, a global list of all these segments is established, and seg-
ments that overlap are joined and split as needed, so that a global
list of segments results. This corresponds to a BH tree where the
leaf nodes hold of the order of sN/N cpu particles. We can now as-
sign one or several consecutive segments to each processor, with
the divisions chosen such that an approximate work-load balance is
obtained, subject to the constraint of a maximum allowed memory
imbalance. The net result of this procedure is that a range of keys is
assigned to each processor, which defines the domain decomposi-
tion and is now used to move the particles to their target processors,
as needed. Note that unlike a global sort, the above method requires
little communication.

For the particles of each individual processor, we then construct
a BH tree in the usual fashion, using the full extent of the particle
set as the root grid size. In addition, we insert ‘pseudo-particles’
into the tree, which represent the mass on all other processors. Each
of the segments in the global domain list, which was not assigned

to the local processor, is represented by a pseudo-particle. In the
tree, these serve as placeholders for branches of the tree that reside
completely on a different processor. We can obtain the multipole
moments of such a branch from the corresponding remote proces-
sor, and give the pseudo-particle these properties. Having inserted
the pseudo-particles into each local tree therefore results in a ‘top-
level tree’ that complements the tree branches generated by local
particles. The local tree is complete in the sense that all internal
nodes of the top-level tree have correct multipole moments, and
they are independent of the domain decomposition resulting for a
given processor number. However, the local tree has some nodes that
consist of pseudo-particles. These nodes cannot be opened because
the corresponding particle data reside on a different processor, but
when encountered in the tree walk, we know precisely on which
processor this information resides.

The parallel tree force computation proceeds therefore as follows.
For each of its (active) local particles, a processor walks its tree in the
usual way, collecting force contributions from a set of nodes, which
may include top-level tree nodes and pseudo-particles. If the node
represented by a pseudo-particle needs to opened, the walk along the
corresponding branch of the tree cannot be continued. In this case,
the particle is flagged for export to the processor the pseudo-particle
came from, and its coordinates are written into a buffer list, after
which the tree walk is continued. If needed, the particle can be put
several times into the buffer list, but at most once for each target pro-
cessor. After all local particles have been processed, the particles in
the buffer are sorted by the rank of the processor they need to be sent
to. This collects all the data that need to be sent to a certain proces-
sor in a contiguous block, which can then be communicated in one
operation based on a collective hypercube communication model.
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The result is a list of imported particles for which the local tree is
walked yet again. Unlike in the normal tree walk for local particles,
all branches of the tree that do not exclusively contain local mass can
be immediately discarded, because the corresponding force contri-
butions have already been accounted for by the processor that sent
the particle. Once the partial forces for all imported particles have
been computed, the results are communicated back to the sending
processors, using a second hypercube communication. A processor
that sent out particles receives in this way force contributions for
nodes that it could not open locally. Adding these contributions to
the local force computed in the first step, the full force for each local
particle is then obtained. The forces are independent of the number
of processors used and the domain cuts that where made. In prac-
tice, numerical round-off can still introduce differences however,
because the sequence of arithmetic operations that leads to a given
force changes when the number of CPUs is modified.

Unlike in GADGET-1, particles are not automatically exported to
other processors, and if they are, then only to those processors that
hold information that is directly needed in the tree walk. Particularly
in the TreePM scheme and in SPH, this leads to a drastic reduction
in the required communication during the parallel force computa-
tions, an effect that is particularly important when the number of
CPUs is large. Because the domains are locally compact and the tree
walk is restricted to a small short-range region in SPH and TreePM,
most particles will lie completely inside the local domain, requiring
no information from other processors at all, and if they have to be
exported, then typically only to one or a few other processors. We
also remark that the above communication scheme tends to hide
communication latency, because the processors can work indepen-
dently on (long) lists of particles before they meet for an exchange
of particles or results.

Finally, we note that we apply the Peano–Hilbert curve for a
second purpose as well. Within each local domain, we order the
particles in memory according to a finely resolved Peano–Hilbert
curve. This is done as a pure optimization measure, designed to in-
crease the computational speed. Because particles that are adjacent
in memory after Peano–Hilbert ordering will have close spatial co-
ordinates, they also tend to have very similar interaction lists. If the
microprocessor works on them consecutively, it will hence in many
cases find the required data for tree nodes already in local cache
memory, which reduces wait cycles for the slower main memory.
Our test results show that the Peano–Hilbert ordered particle set can
result in nearly twice the performance compared to random order,
even though the actual tree code that is executed is the same in both
cases. The exact speed-up obtained by this trick is architecture- and
problem-dependent, however.

5.2 Parallel Fourier transforms

In the TreePM algorithm, we not only need to parallelize the tree
algorithm, but also the PM computations. For the Fourier trans-
forms themselves we employ the massively parallel version of the
FFTW library developed at the Massachusetts Institute of Technol-
ogy (MIT). The decomposition of the data is here based on slabs
along one coordinate axis. The Fourier transform can then be carried
out locally for the coordinate axes parallel to the slabs. However, the
third dimension requires a global transpose of the data cube, a very
communication intensive step which tends to be quite restrictive for
the scalability of massively parallel FFTs, unless the communica-
tion bandwidth of the computer is very high. Fortunately, in most
applications of interest, the cost of the FFTs is so subdominant that

even a poor scaling remains unproblematic up to relatively large
processor numbers.

A more important problem lies in the slab data layout required
by the FFT, which is quite different from the, to first order, ‘cubical’
domain decomposition that is ideal for the tree algorithm. Dubinski
et al. (2004) and White (2002) approached this problem by choosing
a slab decomposition also for the tree algorithm. While being simple,
this poses severe restrictions on the combinations of mesh size and
processor number that can be run efficiently. In particular, in the
limit of large processor number, the slabs become very thin, so that
work-load balancing can become poor. In addition, due to the large
surface-to-volume ratio of the thin slabs, the memory cost of ghost
layers required for the CIC assignment and interpolation schemes
can become quite sizable. In fact, in the extreme case of slabs that are
one mesh cell wide, one would have to store three ghost layer zones,
which would then have to come from more than one processor on
the ‘left’ and ‘right’.

An obvious alternative is to use different decompositions for the
tree algorithm and the PM part. This is the approach GADGET-2 uses.
One possibility would be to swap the data between the Peano–
Hilbert decomposition, and the slab decomposition whenever a PM
force computation is necessary. However, this approach has a num-
ber of drawbacks. First of all, it would require the exchange of a
substantial data volume, because almost all particles and their asso-
ciated data would have to be moved in the general case. Secondly, be-
cause the slab decomposition essentially enforces an equal volume
decomposition, this may give rise to large particle-load imbalance
in highly clustered simulations, for example in ‘zoom’ simulations.
An extreme case of this problem would be encountered when FFTs
with vacuum boundaries are used. Here, at least half of the slabs,
and hence processors, would be completely devoid of particles if
the particle set was actually swapped to the slab decomposition.

We therefore implemented a second possibility, where the parti-
cle data remains in place, i.e. in the order established for the tree
algorithm. For the FFT, each processor determines by itself with
which slab its local particle data overlaps. For the corresponding
patch, the local particle data is then CIC-binned, and this patch is
transmitted to the processor that holds the slab in the parallel FFT.
In this way, the required density field for each slab is constructed
from the contributions of several processors. In this scheme only
the scalar density values are transmitted, which is a substantially
smaller data volume than in the alternative scheme, even when the
PM grid is chosen somewhat larger than the effective particle grid.
After the gravitational potential has been computed, we collect in
the same way the potential for a mesh that covers the local particle
set. We can here pull the corresponding parts from the slabs of in-
dividual processors, including the ghost layers required around the
local patch for finite differencing of the potential. Because the local
domains are compact, they have a much smaller surface-to-volume
ratio than the slabs, so that the memory cost of the ghost layers
remains quite small. After the local patch of the potential has been
assembled, it can be finite differenced and interpolated to the par-
ticle coordinates without requiring any additional communication.
This method hence combines the PM computation in a quite flexible
way with the tree algorithm, without putting any restriction on the
allowed processor number, and avoiding, in particular, the memory-
and work-load balancing issues mentioned above.

5.3 Parallel I/O

Current cosmological simulations have reached a substantial size,
with particle numbers well in excess of 107 used quite routinely.
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Time slices of such simulations can reach up to a few GByte in
size, at which point it becomes very time-consuming to write or
read these data sequentially on a single processor. Also, it can be
impractical to store the data in a single file. GADGET-2 therefore
allows simulation data to be split across several files. Each file is
written or read by one processor only, with data sent to or received
by a group of processors. Several of these files can be processed
in parallel. This number can be either equal to the total number of
files requested, or restricted to a smaller value in order to prevent
a ‘flooding’ of the I/O subsystem of the operating system, which
can be counterproductive. Unlike in previous versions of the code,
GADGET-2 does not pose restrictions on the number of files and the
number of simultaneously processed files in relation to the number
of processors used.

In the largest simulation carried out with GADGET-2 thus far, a
simulation with 21603 particles (Springel et al. 2005b), the total
size of a snapshot slice was more than 300 GB. Using parallel
I/O on the high-performance IBM p690 system of the Max-Planck-
Gesellschaft (MPG) computing centre in Garching, these time slices
could be written in slightly less than 300 s, translating in an effective
disc bandwidth of ∼1 GB s−1. Without parallel I/O, this would have
taken a factor of �50–60 longer.

5.4 Miscellaneous features

We note that unlike previous versions, GADGET-2 can be run on an
arbitrary number of processors, including a single processor. There
is hence no longer a need for separate serial and parallel versions.
Lifting the restriction for the processor numbers to be powers of
two can be quite useful, particularly for loosely coupled clusters of
workstations, where windows of opportunity for simulations may
arise that offer ‘odd’ processor numbers for production runs.

This flexibility is achieved despite the code’s use of a commu-
nication model that operates with synchronous communication ex-
clusively. The principal model for communication in the force com-
putations follows a hypercube strategy. If the processor number is
a power of two, say 2p, then a full all-to-all communication cycle
can be realized by 2p − 1 cycles, where in each cycle 2p−1 disjoint
processor pairs are formed that exchange messages. If the processor
number is not a power of two, this scheme can still be used, but
the processors need to be embedded in the hypercube scheme cor-
responding to the next higher power of two. As a result, some of the
processors will be unpaired in a subfraction of the communication
cycle, lowering the overall efficiency somewhat.

GADGET-2 can also be used to set up ‘glass’ initial conditions, as
suggested by White (1996). Such a particle distribution arises when
a Poisson sample in an expanding periodic box is evolved with
the sign of gravity reversed until residual forces have dropped to
negligible values. The glass distribution then provides an alternative
to a regular grid for use as an unperturbed initial mass distribution
in cosmological simulations of structure formation. To speed up
convergence, the code uses an ‘inverse Zel’dovich’ approximation
based on the measured forces to move the particles to their estimated
Lagrangian positions.

We have also added the ability to simulate gas-dynamical simu-
lations in two dimensions, both with and without periodic bound-
ary conditions. A further new feature in GADGET-2 is the optional
use of the Hierarchical Data Format (HDF5), developed by the
National Center for Supercomputing Applications (NCSA). This
allows storage of snapshot files produced by GADGET-2 in a platform-
independent form, simplifying data exchange with a variety of anal-
ysis software.

6 T E S T P RO B L E M S

Unfortunately, it is not possible to formally demonstrate the correct-
ness of complex simulation codes such as GADGET-2. However, the
reliability of a code can be studied empirically by applying it to a
wide range of problems, under a broad range of values of nuisance
code parameters. By comparing with known analytical solutions and
other independent numerical methods, an assessment of the numer-
ical reliability of the method can be established, which is essential
for trusting the results of simulations where no analytical solutions
are known (which is of course the reason to perform simulations to
begin with).

We begin with a simple shock-tube test for the SPH component of
GADGET-2, which has known analytical solutions. We then consider
the more elaborate problem of the collapse of a cold sphere of gas
under self-gravity. This 3D problem couples self-gravity and gas dy-
namics over a dynamic range similar to that encountered in structure
formation simulations. There are no analytical solutions, but highly
accurate results from 1D shock-capturing codes exist for compari-
son. We then move on and consider the highly dissipative collapse
of an isothermal cloud of gas, the ‘standard isothermal test case’ of
Boss & Bodenheimer (1979), where we carry out a resolution study
that examines the reliability of the onset of fragmentation.

As a test of the accuracy of the dark matter dynamics, we con-
sider the dark matter halo mass function and the two-point corre-
lation function obtained for two 2563 simulations of cosmological
structure formation. Our initial conditions are the same as those
used recently by Heitmann et al. (2005) in a comparison of several
cosmological codes. We also use their results obtained for these
different codes to compare with GADGET-2.

We then consider the formation of the ‘Santa Barbara cluster’
(Frenk et al. 1999), a realistic hydrodynamical simulation of the
formation of a rich cluster of galaxies. The correct solution for this
complex problem, which is directly tied to our theoretical under-
standing of the intracluster medium, is not known. However, results
for GADGET-2 can be compared to the 12 codes examined in Frenk
et al. (1999), which can serve as a broad consistency check.

Finally, we briefly consider a further hydrodynamical test prob-
lem, which involves strong shocks and vorticity generation. This is
the interaction of a blast wave with a cold cloud of gas embedded
at pressure equilibrium in ambient gas. This forms an advanced test
of the capabilities of the SPH solver and has physical relevance for
models of the ISM, for example.

6.1 Shock tube

We begin by considering a standard Sod shock-tube test, which
provides a useful validation of the code’s ability to follow basic
hydrodynamical phenomena. We consider an ideal gas with γ =
1.4, initially at rest, where the half-space x < 0 is filled with gas at
unit pressure and unit density (ρ 1 = 1, P 1 = 1), while x > 0 is filled
with low-pressure gas (P 2 = 0.1795) of lower density (ρ 2 = 0.25).
These initial conditions have been frequently used as a test for SPH
codes (e.g. Hernquist & Katz 1989; Rasio & Shapiro 1991; Wadsley
et al. 2004). We realize the initial conditions in three dimensions
using an irregular glass-like distribution of particles of equal mass,
embedded in a periodic box that is longer in the x-direction than in
the y- and z-directions.

In Fig. 9, we show the result obtained with GADGET-2 at time
t = 5.0. The agreement with the analytical solution is good, with
discontinuities resolved in about three interparticle separations, or
equivalently two to three SPH smoothing lengths. At the contact
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Figure 9. Sod shock test carried out in three dimensions. The gas is initially
at rest with ρ1 = 1.0, P 1 = 1.0 for x < 0, and ρ2 = 0.25, P 2 = 0.1795 for
x > 0. The numerical result is shown with circles (with a spacing equal to
the mean particle spacing in the low-density region) and compared with the
analytical result at t = 5.0. A shock of Mach number M = 1.48 develops.

discontinuity, a characteristic pressure blip is observed, and some
excess entropy has been produced there as a result of the sharp
discontinuity in the initial conditions, which has not been smoothed
out and therefore is not represented well by SPH at t = 0. Note
that while the shock is broadened, the post-shock temperature and
density are computed very accurately.

6.2 Collapse of an adiabatic gas sphere

A considerably more demanding test problem is the adiabatic col-
lapse of an initially cold gas cloud under its own self-gravity. Origi-
nally proposed by Evrard (1988), this problem has been considered
by many authors (e.g. Hernquist & Katz 1989; Davé et al. 1997;
Wadsley et al. 2004) as a test of cosmological codes. The initial
conditions in natural units (G = 1) take the form of a spherical
γ = 5/3 cloud of unit mass and unit radius, with a ρ ∝ 1/r den-
sity profile, and with an initial thermal energy per unit mass of
u = 0.05. When evolved forward in time, the cloud collapses gravi-

tationally until a central bounce develops with a strong shock moving
outward.

In Fig. 10 we show spherically averaged profiles of density, radial
velocity and entropy of the system at time t = 0.8, and compare it
to a 1D high-precision calculation carried out with the piece-wise
parabolic method (PPM) by Steinmetz & Mueller (1993). An ana-
lytical solution is not available for this problem. We show results
for two different resolutions, 1.56 × 106 and 1.95 × 105 particles;
lower-resolution runs are still able to reproduce the overall solution
well, although the shock becomes increasingly more broadened.
We see that for sufficiently high resolution, the 3D SPH calculation
reproduces the 1D PPM result reasonably well. In the region just
outside the shock, we see appreciable pre-shock entropy generation.
As pointed out by Wadsley et al. (2004), this arises due to the arti-
ficial viscosity which is here already triggered at some level by the
strong convergence of the flow in the pre-shock region. This reduces
the entropy production in the actual shock somewhat, biasing the
entropy of the post-shock flow low. Note that thanks to our entropy
formulation, the entropy profile is well reproduced at the outer edge
of the flow, unlike the test calculation by Wadsley et al. (2004) using
a traditional SPH formulation.

6.3 Isothermal collapse

Another demanding test problem that couples the evolution un-
der self-gravity and hydrodynamics is the ‘standard isothermal test
case’ introduced by Boss & Bodenheimer (1979). We consider this
fragmentation calculation in the variant proposed by Burkert &
Bodenheimer (1993), where a smaller initial non-axisymmetric per-
turbation is employed; this form of the initial conditions has been
used in numerous test calculations since then. The initial state con-
sists of a spherical cloud with sound speed cs = 1.66 × 104 cm s−1

and an isothermal equation of state, P = c2
s ρ. The cloud radius is

R = 5 × 1016 cm, its mass is M = 1 M
, and it is in solid body
rotation with an angular velocity of ω = 7.2 × 10−13 rad s−1. The
underlying constant density distribution (ρ 0 = 3.82 × 10−18 g cm−3)
is modulated with an m = 2 density perturbation

ρ(φ) = ρ0[1 + 0.1 cos(2φ)], (36)

where φ is the azimuthal angle around the rotation axis. We imple-
ment the initial conditions with a sphere of particles carved out of a
regular grid, where the 10 per cent density perturbation is achieved
with a mass perturbation in the otherwise equal-mass particles.

This simultaneous collapse and fragmentation problem requires
high spatial resolution and accuracy, both in the treatment of self-
gravity and in the hydrodynamics. A particular difficulty is that
only a small fraction of the simulated mass eventually becomes
sufficiently self-gravitating to form fragments. As Bate & Burkert
(1997) discuss, numerical results are only trustworthy if the Jeans
mass is resolved during the calculation. Also, if the gravitational
softening is too large, collapse may be inhibited and the forming
clumps may have too large mass. In fact, Sommer-Larsen, Vedel &
Hellsten (1998) show that for a finite choice of softening length, an
arbitrarily large mass of gas in pressure equilibrium can be deposited
in a non-singular isothermal density distribution with a radius of the
order of the softening length. On the other hand, a gravitational
softening much smaller than the SPH smoothing length can lead
to artificial clumping of particles. The best strategy for this type of
fragmentation calculation therefore appears to be to make the grav-
itational softening equal to the SPH softening length, an approach
we use in this test calculation. While a varying gravitational soften-
ing formally changes the potential energy of the system, this energy
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Figure 10. Adiabatic collapse of a gas sphere (‘Evrard’ test). At time t = 0.8, we show radial profiles of density, velocity and entropy for two different
resolutions, in the top row for 1.56 × 106 particles, and in the bottom row for 1.95 × 105 particles. The solid lines mark the result of a 1D PPM calculation
(Steinmetz & Mueller 1993), which can be taken as a quasi-exact result in this case. The 3D SPH calculations reproduce the principal features of this solution
generally quite well. However, as expected, the shock is broadened, and also shows some pre-shock entropy generation. The latter effect is particularly strong in
this spherically symmetric problem because of the rapid convergence of the flow in the infall region in front of the shock, which triggers the artificial viscosity.
However, the post-shock properties of the flow are only mildly affected by this and show quite good agreement with the 1D PPM results.

perturbation can be neglected in the highly dissipative isothermal
case we consider here. Note that once fragmentation occurs, the den-
sity rises rapidly on a free-fall time-scale, and the smallest resolved
spatial scale as well as the time-step drop rapidly. This quickly
causes the simulation to stall, unless the dense gas is eliminated
somehow, for example by modelling star formation with sink parti-
cles (Bonnell et al. 1997).

In Fig. 11, we compare the density fields at t = 1.24 free-
fall times in the z = 0 plane, orthogonal to the rotation axis, for
four different numerical resolutions, ranging from 3.3 × 104 to
1.71 × 107. At this time, an elongated bar-like structure has formed
with two high-density regions at its ends. Due to a converging gas
flow on to these ends, they become eventually self-gravitating and
collapse to form two fragments. The onset of this collapse can be
studied in Fig. 12, where we plot the maximum density reached in
the simulation volume as a function of time. It can be seen that the
three high-resolution computations converge reasonably well, with
a small residual trend towards slightly earlier collapse times with
higher resolution, something that is probably to be expected. The
low-resolution run behaves qualitatively very similarly, but shows
some small oscillations in the maximum density in the early phases
of the collapse. Overall, our results compare favourably with those
of Bate & Burkert (1997), but we are here able to reach higher res-
olution and are also able to reproduce more cleanly a first density
maximum at t � 1.1, which is also seen in the mesh calculations
considered by Bate & Burkert (1997).

6.4 Dark matter halo mass function and clustering

Cosmological simulations of structure formation are the primary
target of GADGET-2. Because the dominant mass component is dark
matter, the accuracy and performance of the collisionless N-body
algorithms in periodic cosmological boxes is of tantamount impor-
tance for this science application. To compare results of GADGET-2
to other codes, we make use of a recent extensive study by
Heitmann et al. (2005), who systematically compared the dark mat-
ter results obtained with a number of different simulation codes and
techniques. Among the codes tested was also the old public version
of GADGET-1 (Springel et al. 2001b). As a useful service to the com-
munity, Heitmann et al. (2005) have made their initial conditions as
well as the evolved results of their computations publicly available.
We here reanalyse the dark matter mass function and the two-point
autocorrelation function of their data using an independent mea-
surement code and we compare the results with those we obtained
with GADGET-2.

The simulations considered are two runs with 2563 particles in
periodic boxes of side length 64 and 256 h−1 Mpc, respectively, in
an �m = 0.314, �� = 0.686 universe with h = 0.71. Further details
about the initial conditions are given in Heitmann et al. (2005). We
use a comoving gravitational softening length equal to 1/35 of the
mean particle spacing.

Non-linear gravitational clustering leads to the formation of grav-
itationally bound structures that over time build up ever more
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Figure 11. Resolution study for the ‘standard isothermal collapse’ simulation. We show the gas density in a slice trough the centre of the simulated volume at
1.24 free-fall times, roughly when the two perturbations at the ends of the bar-like structure become self-gravitating and undergo gravitational collapse. From
the top left to the bottom row, the particle number increases from 3.3 × 104 to 1.71 × 107 by factors of 8.

massive haloes. The abundance of haloes as a function of mass
and time is arguably the most important basic result of structure for-
mation calculations. In Fig. 13, we show the differential halo mass
function, computed with the standard friends-of-friends (FOF) algo-
rithm using a linking length equal to 0.2 the mean particle spacing.
The top panel compares our new GADGET-2 result for the large box
at z = 0 with the result obtained by Heitmann et al. (2005) with
GADGET-1. We obtain very good agreement over the full mass range.
The bottom panel of Fig. 13 extends the comparison to the five
additional codes examined by Heitmann et al. (2005): the AMR
code FLASH (Fryxell et al. 2000), the parallel tree code HOT (Warren
& Salmon 1995), the adaptive P3M code HYDRA (Couchman et al.
1995), the parallel PM code MC2 (Habib et al., in preparation) and
the tree-PM solver TPM (Bode & Ostriker 2003). We plot the rela-
tive halo abundance in each bin, normalized to the GADGET-2 result.
While there is good agreement for the abundance of massive haloes

within counting statistics, systematic differences between the codes
become apparent on the low-mass side. Particularly, the codes based
purely on mesh-based gravity solvers, MC2 and FLASH, have prob-
lems here and show a substantial deficit of small structures. It is
expected that some small haloes are lost due to insufficient resolu-
tion in fixed-mesh codes, an effect that can be alleviated by using a
sufficiently fine mesh, as MC2 demonstrates. It is worrying however
that current AMR codes have particularly severe problems in this
area as well. A similar conclusion was also reached independently
by O’Shea et al. (2005a) in a comparison of the AMR code ENZO

(O’Shea et al. 2005b) with GADGET. As gravity is the driving force of
structure formation, the novel AMR methods clearly need to keep an
eye on this issue and to improve their gravity solvers when needed,
otherwise part of the advantage gained by their more accurate
treatment of hydrodynamics in cosmological simulations may be
lost.
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Figure 12. Resolution study for the ‘standard isothermal collapse’ sim-
ulation. We here compare the temporal evolution of the maximum density
reached in simulations of different particle number, as indicated in the legend.
Symbols give the SPH result (8 × 104 particles) of Bate & Burkert (1997),
which agrees quite well with our result at comparable resolution. The small
residual differences are plausibly due to differences in the employed SPH
density estimator or the neighbour number.

In Fig. 14, we show a similar comparison for the two-point corre-
lation function of the dark matter in the small 64 h−1 Mpc box, again
normalized to the GADGET-2 results. As discussed in more detail by
Heitmann et al. (2005), on large scales all codes agree reassuringly
well, perhaps even better than might have been expected. On small
scales, the mesh-based codes tend to show a deficit of clustering,
consistent with the results for the mass function. Interestingly, the
result obtained by Heitmann et al. (2005) for GADGET-1 shows a no-
ticeable excess of clustering on very small scales compared to our
computation with GADGET-2. This happens on rather small scales,
comparable to the gravitational softening scale. This could simply be
the result of a different choice of gravitational softening length, but
we also believe that the GADGET-2 result is the more accurate here.
As shown by Power et al. (2003), the time integrator of GADGET-1
has the property that insufficient time integration settings can lead to
an increase of the central density in haloes due to secular integration
errors, while for very poor time-stepping the halo density is even-
tually suppressed. The numerical steepening of the central density
profile caused by this effect could then show up as a signature of
enhanced clustering at very small scales, just as is seen here in the
GADGET-1 result.

6.5 Santa Barbara cluster

In the ‘Santa Barbara cluster comparison project’ (Frenk et al. 1999),
a large number of hydrodynamic cosmological simulation codes
were applied to the same initial conditions, which were set up to give
rise to the formation of a rich cluster of galaxies in a critical density
CDM universe, simulated using adiabatic gas physics. In total, 12
codes were compared in this study, including SPH and Eulerian
codes, both with fixed and adaptive meshes. Each simulation group
was allowed to downsample the initial conditions in a way they
considered reasonable, given also their computational resources and
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Figure 13. Comparison of the differential halo mass function obtained with
different simulation codes for a 2563 �CDM simulation in a 256 h−1 Mpc
box. The top panel compares the results from GADGET-2 (filled circles with
Poisson error bars) with those obtained with the old version GADGET-1 (open
circles). The bottom panel shows the relative differences with respect to
GADGET-2 for a larger pool of six codes. The evolved density fields for the
latter have been taken from Heitmann et al. (2005). The dashed lines indicate
the size of the expected 1σ scatter due to counting statistics.

code abilities, so that the final comparison involved computations
of different effective resolutions.

The overall results of this comparison were encouraging in
the sense that bulk properties of the cluster agreed to within
∼10 per cent and the gas properties were similar in most codes,
although with large scatter in the inner parts of the cluster. However,
there have also been some systematic differences in the results, most
notably between mesh-based and SPH codes. The former showed
higher temperatures and entropies in the cluster centre than the SPH
codes. Also, the enclosed gas fraction within the virial radius was
systematically higher for mesh codes and closer to the universal
baryonic fraction, while the SPH codes only found about 90 per cent
of the universal fraction in the virial radius. Since then, the Santa
Barbara cluster has been repeatedly used as a test problem for cos-
mological codes, but the question of which is the ‘correct’ entropy
profile and gas fraction in an adiabatic cluster has not been settled
conclusively so far.
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Figure 14. Comparison of different codes with respect to the two-point
correlation of the evolved density of a 2563 �CDM simulation in a
64 h−1 Mpc box. We show the relative differences with respect to GADGET-2
for the group of six codes considered by Heitmann et al. (2005). The vertical
dotted line marks the gravitational softening length of ε = 10 kpc we used
for our GADGET-2 calculation. We explicitly checked that the latter is fully
converged with respect to the time integration and force accuracy settings.

We have simulated the Santa Barbara cluster at three different nu-
merical resolutions (2 × 2563, 2 × 1283 and 2 × 643) with GADGET-2,
in each case using a homogeneous sampling for the periodic box.
Frenk et al. (1999) supplied displacement fields at a nominal res-
olution of 2563, which we directly used for our high-resolution
2 × 2563 run. The initial conditions for the lower-resolution runs
were constructed by applying a filter in Fourier space to eliminate
modes above the corresponding Nyquist frequencies, in order to
avoid aliasing of power.

In Fig. 15, we compare our results in terms of spherically averaged
profiles for dark matter density, dark matter velocity dispersion, gas
density, enclosed gas fraction, temperature and specific entropy.
We use the original binning prescriptions of Frenk et al. (1999),
and the same axis ranges for easier comparison. Our simulations
converge quite well in all their properties, apart from the innermost
bins (we have plotted bins if they contained at least 10 dark matter
or gas particles). However, we note that we confirm the finding of
Wadsley et al. (2004) that there is a merger happening right at z =
0; in fact, in our high-resolution 2 × 2563 run, the infalling clump
is just passing the centre at z = 0, while this occurs with a slight
time offset in the other two runs. We have therefore actually plotted
the results at expansion factor a = 1.02 in Fig. 15, where the cluster
has relaxed again. The results at z = 0 look very similar: only the
temperature, gas entropy and dark matter velocity dispersion at r <

0.1 show larger differences between the simulations. As Wadsley
et al. (2004) point out, the effects of this unfortunate timing of the
merger presumably also contribute to the scatter found in the results
of Frenk et al. (1999).

Our results agree very well with the mean profiles reported in the
Santa Barbara cluster comparison project. Our resolution study also
suggests that GADGET-2 produces quite stable convergence for a clean
set of initial conditions of different resolutions. The mass resolution
has been varied by a factor of 64 and the spatial resolution per
dimension by a factor of 4 in this series; this is already a significant
dynamic range for 3D simulations, thereby helping to build up trust
in the robustness of the results of the code.

The entropy profile of our results at small radii (R ∼ 0.1) ap-
pears to lie somewhat above the SPH results reported in Frenk et al.
(1999) for other SPH codes. This is in line with the findings of
Ascasibar et al. (2003), and perhaps a consequence of the entropy-
conserving formulation of SPH that we have adopted in GADGET-2.
Also, the entropy profile appears to become slightly shallower at
small radii, which suggests a small difference from the near power-
law behaviour seen in other SPH codes (see, for example, the high-
resolution result of Wadsley et al. 2004). However, this effect ap-
pears to be too small to produce the large isentropic cores seen in
the mesh simulations of Frenk et al. (1999). Such a core has also
been found in the new AMR code by Quilis (2004). The system-
atic difference between the different simulation methods therefore
continues to persist. We suggest that it may be caused by entropy
production due to mixing; this channel is absent in the SPH code by
construction while it operates more efficiently in the mesh codes. It
is presently unclear whether the SPH codes do not allow for enough
mixing, or whether the mesh codes experience too much of it. Both
seem possible.

Another interesting point to observe is that our SPH simulations
clearly predict that the enclosed baryon fraction is well below the
universal baryon fraction at the virial radius of the adiabatic cluster.
It seems a solid result that our results converge at values of around
90 per cent, in clear contrast with results near ∼100 per cent pre-
dicted by the majority of mesh codes in the study by Frenk et al.
(1999). However, we note that the new AMR code ART of Kravtsov,
Nagai & Vikhlinin (2005) also gives values below the universal
baryon fraction, although not quite as low as the SPH codes. We can
also observe a clear break in the profile at ∼0.6 Mpc, which could
not be discerned as easily in the results of Frenk et al. (1999). At
this radius, the gas profile begins to notably flatten compared with
the dark matter profile.

6.6 Interaction of a strong shock with a dense gas cloud

As a final hydrodynamical test problem we consider the interaction
of a strong shock wave with an overdense cloud embedded at pres-
sure equilibrium in a background gas. This can be viewed as a sim-
ple model for the interaction of a supernova blast wave with a dense
cloud in the ISM. When the shock strikes the cloud, a complicated
structure of multiple shocks is formed, and vortices are generated
in the flow around the cloud which lead to its (partial) destruction.
Aside from its physical relevance for simple models of the ISM,
this makes it an interesting hydrodynamical test problem. The situ-
ation has first been studied numerically in a classic paper by Klein,
McKee & Colella (1994). Recently, Poludnenko, Frank & Blackman
(2002) have readdressed this problem with a high-resolution AMR
code; they also extended their study to cases of multiple clouds and
different density ratios and shock strengths.

As initial conditions, we adopt a planar shock wave of Mach
number M = 10 which enters gas of unit density and unit pressure
from the negative x-direction. In the frame of the ambient back-
ground gas, the shock approaches with velocity v = 9.586, leading
to a post-shock density of ρ ′ = 3.884. We adopt a two-dimensional
computational domain with periodic boundaries in the y-direction,
and formally infinite extension in the x-direction. The boxsize in
the y-direction is 25 length units, and the radius of the spherical
cloud of overdensity 5 is r = 3.5. The set-up of SPH particles was
realized with a glass-like particle distribution using equal-mass par-
ticles. We have first evolved the incident shock wave independently
in order to eliminate transients that typically arise if it is set up as
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Figure 15. Radial profiles of the Santa Barbara cluster. From top left to bottom right, we show spherically averaged profiles of dark matter density, gas density,
temperature, dark matter velocity dispersion, enclosed gas fraction and specific entropy. In each case, we compare results for three different resolutions. The
vertical line marks the virial radius of the cluster. The average of all codes used in the Santa Barbara cluster comparison project is indicated with open circles.
The dashed line in the dark matter profile is a NFW profile with the parameters given by Frenk et al. (1999). The same profile is also shown in the gas density
plot to guide the eye (scaled by the baryon to dark matter density ratio).
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Figure 16. Time evolution of the interaction of a strong shock wave with a dense cloud of gas. The cloud of radius r = 3.5 has an initial relative overdensity
of 5, and is embedded at pressure equilibrium in ambient gas of unit density and unit pressure. From the left, a shock wave with Mach number M = 10.0
approaches and strikes the cloud. The gas has γ = 5/3, giving the shock an incident velocity of v = 9.586 and a compression factor of 3.884 with respect to
the background gas. Each panel shows the gas density in a region of size 62.5 × 25.0, with the time indicated in the top-right corner. The computation assumed
periodic boundaries at the top and bottom.

a sharp discontinuity, i.e. our incident shock is consistent with the
SPH smoothing scheme.

In Fig. 16, we show density maps of the system at different times
of its evolution. When the shock strikes the cloud, a complicated

structure of forward and reverse shocks develops. A detailed descrip-
tion of the various hydrodynamical features of the flow is given by
Poludnenko et al. (2002). Two pairs of primary vortices develop in
the flow around the cloud and start shredding the cloud. This can
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Figure 17. Local gradients in the gas density field at time t = 4.5, visualized
by a grey-scale image with intensity proportional to log (|∇ρ|/ρ). Clearly
visible are the two pairs of primary and secondary vortices, as well as the
stem of the backflow. The region shown has a size of 31.25 × 12.5.

be seen particularly well in the ‘Schlieren’ image of Fig. 17, where
we show a grey-scale map of the local density gradient. Overall, our
SPH results look similar to the AMR results of Poludnenko et al.
(2002), but there are also clearly some differences in detail. For ex-
ample, the small ‘droplets’ of gas chopped off from the cloud still
survive in the SPH calculation for a comparatively long time and
are not mixed efficiently with the background material, a clear dif-
ference with the mesh-based calculations. Presumably, small-scale
fluid instabilities should disperse these droplets eventually, so the
coherence they show in the SPH calculation may be a sign of insuf-
ficient mixing.

7 P E R F O R M A N C E A N D S C A L A B I L I T Y

The performance of a parallel simulation code is a complex func-
tion of many factors, including the type of physical problem studied,
the particle and processor numbers employed, the choices made for
various numerical parameters of the code (e.g. time integration set-
tings, maximum allowed memory consumption, etc.), and finally of
hardware and compiler characteristics. This makes it hard to objec-
tively compare the performance of different codes, which should
ideally be done at comparable integration accuracy for the same
physical system. Given these difficulties, we restrict ourselves to a
basic characterization of the performance and scaling properties of
GADGET-2 without attempting to compare them in detail with other
simulation codes.

7.1 Timing measurements for cosmological simulations

In Table 1, we list the total wall-clock time elapsed when running
the two 2563 dark matter simulations discussed in Section 6.4, based
on the initial conditions of Heitmann et al. (2005). The measured
times are for all tasks of the code, including force computations, tree
construction, domain decomposition, particle drifts, etc. A detailed
breakdown of the relative contributions is given in the table as well.
The hardware used was an 8-CPU partition on a small cluster of
Pentium-IV PCs (2.4-GHz clock speed, two CPUs per machine),
using the public MPICH library for communication via gigabit eth-
ernet.

We can see that the CPU consumption is dominated by the short-
range tree computation, while the PM force is subdominant overall.
The raw force speed in the short-range tree walk of these TreePM
simulations (using a 3843 mesh) reaches about 21 000 forces per
second per processor. This is a high number, significantly in excess
of what is reached with pure tree algorithms. In fact, the latter tend
to be significantly slower for this type of simulation, typically by a
factor of 4–10.

Table 1. CPU time consumption in different parts of the code for
two typical 2563 dark matter simulations. The initial conditions for
the two simulations are those of Heitmann et al. (2005). We first
give the total number of time-steps and the elapsed wall-clock time
to evolve the simulation to z = 0 on eight CPUs of a Pentium-IV
cluster. The total consumed time is then broken up in time spent in
different parts of code, as measured by the timing routines built into
GADGET-2.

Simulation boxsize (2563) 256 h−1 Mpc 64 h−1 Mpc

Time-steps 2648 5794
Total wall-clock time (s) 60 600 173 700
Tree walk 52.8 per cent 41.0 per cent
Tree construction 4.6 per cent 6.4 per cent
Tree walk communication 0.9 per cent 1.6 per cent
Work-load imbalance 6.7 per cent 14.4 per cent
Domain decomposition 13.0 per cent 15.2 per cent
PM force 4.4 per cent 4.9 per cent
Particle and tree drifts 5.3 per cent 4.9 per cent
Kicks and time-stepping 1.4 per cent 1.1 per cent
Peano keys and ordering 8.0 per cent 7.8 per cent
Misc (I/O, etc.) 2.9 per cent 2.6 per cent

Most of the auxiliary tasks of the simulation code, for example
particle drifting, I/O, and so on, typically require a few per cent
of the total CPU. Some of these tasks are due to the parallelization
strategy, namely the domain decomposition, the wait times due to
work-load imbalance, and the time needed for communication it-
self. However, provided these contributions remain subdominant,
we can still expect a significantly faster time to solution as a result
of parallelization, besides the possibility to carry out larger simu-
lations because of the availability of the combined memory of all
processors.

In cosmological hydrodynamical TreePM simulations, we find
that the CPU time required for the SPH computations is roughly
equal to that consumed for the short-range gravitational tree forces.
This is, for example, the case in the simulations of the Santa Barbara
cluster discussed in Section 6.5. The cost of self-gravity is hence
comparable to or larger than the cost of the hydrodynamical compu-
tations in GADGET-2. Even in simulations with dissipation, this ratio
shifts only moderately towards a higher relative cost of the hydro-
dynamics, but of course here the total cost of a simulation increases
substantially because of the much shorter dynamical times that need
to be resolved.

7.2 Scalability

The problem size is an important characteristic when assessing the
performance of a massively parallel simulation code. Due to the tight
coupling of gravitational problems, it is in general not possible to
obtain a nearly linear speed-up when a small problem is distributed
on to many processors. There are several reasons that make this
impossible in practice. (i) There is always some irreducible serial
part of the code that does not parallelize; this overhead is fixed and
hence its relative contribution to the total cost keeps becoming larger
when the parallel parts are accelerated by using more processors.
(ii) The more processors that are used, the less work each of them
has to do, making it harder to balance the work equally among them,
such that more and more time is lost to idle waiting of processors.
(iii) When more processors are used, a smaller particle-load per
processor results, which in turn leads to a larger communication-to-
compute ratio in tightly coupled problems.
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Figure 18. Diagram for the time consumption of a rather small galaxy col-
lision simulation evolved with a different number of processors between one
and eight. We show a sample of 64 time-steps in each case, each represented
by a vertical bar with a width proportional to the elapsed wall-clock time dur-
ing this step. Each step is additionally subdivided into different constituent
parts, drawn in different shades of grey as indicated in the legend.

For all of these reasons, perfect scalability at fixed problem size
can in general not be expected. In Fig. 18, we illustrate this with a
rather small galaxy collision simulation, consisting of two galaxies
with 30 000 collisionless particles each, distributed into a stellar disc
and an extended dark matter halo. We have evolved this simulation
with GADGET-2 using different processor numbers, from one to eight.
The diagram in Fig. 18 shows the time consumption in different parts
of the code, during 64 typical steps taken from the simulation. Each
step is shown with an area proportional to the elapsed wall-clock
time, and different shades of grey are used for different parts of the
code within each step. In particular, black is used for the actual tree
walk, while light grey marks losses of some sort or other (primarily
wait times due to work-load imbalance, and communication times).
We see that the relative fraction of this light grey area (at the top)
relative to the total keeps growing when the number of processors
is increased. In fact, the scaling is disappointing in this example,
falling significantly short of perfect scaling where the total area for
the 64 steps would decline as the inverse of the processor number.
However, this result is not really surprising for such a small prob-
lem; when typical time-steps last only fractions of a second and the
particle-load per processor is very low, the problem size is simply
too small to allow good scaling with GADGET-2’s massively parallel
algorithms. We also see that the widths of the different steps follow

a particular pattern, stemming from the individual time-step inte-
gration scheme, where the occupancy of certain steps with ‘active’
particles constantly changes. The two large grey bars represent the
computation of the gravitational potential for all particles, which
was here carried out in regular intervals to monitor energy conser-
vation of the code.

If a problem of larger size and higher spatial uniformity is se-
lected, better scalability over a larger number of processors can be
achieved. This is illustrated in Fig. 19, where the wall-clock time as
a function of processor number for the computation of one full step
of a dark matter simulation with 2703 particles is shown. The sim-
ulation follows a �CDM model in a periodic box of 62.5 h−1 Mpc
on a side, with 5 h−1 kpc force resolution, computed with the TreePM
scheme with a 5123 mesh. We show results both for z = 50 and z = 0
to compare the scalability for unclustered and strongly clustered par-
ticle distributions, respectively. To illustrate the dependence of the
code’s scalability on the communication network of the computer
used, we give results for different computer architectures, namely a
high-end cluster of IBM p690 computers with a very fast network,
and also for ‘Beowulf’ clusters, consisting of commodity computers
that are connected with much slower standard ethernet connections.
Beside the total time, we also give the times for the PM and tree
parts of the code separately. They together account for almost all of
the CPU time required by the code for a full step.

On the IBM p690 cluster with the fast ‘Federation Switch’ com-
munication system, scalability is essentially perfect at high redshift,
and only moderately degraded by work-load imbalance losses in the
tree part of the code at low redshift. On clusters of commodity work-
stations, the scaling of the PM part of the code is limited by the band-
width of the communication network that connects the computers.
Once the execution time of the PM part becomes communication-
bound, the PM speed can actually decline for a larger number of
processors, as this requires yet more communication in the parallel
FFT. The tree part of the code is however less sensitive to commu-
nication times, and scales to a larger number of processors even for
slow network connections. Note that in practice the code is typi-
cally run with individual and adaptive time-steps where most code
steps do not involve execution of the PM part. The overall scalability
of the code on clusters with slow network connections is therefore
somewhat better than suggested based on the results of Fig. 19 alone.
Also note that a reduction of the size of the PM mesh substantially
reduces the communication requirements, which extends the scala-
bility of the code on clusters with standard network connections, at
the prize of a slightly lower speed of the tree part of the algorithm.

Arguably of more practical relevance for assessing the scaling of
the code is to consider its performance when not only the processor
number but, at the same time, also the problem size is increased.
This is of immediate relevance for practical application of a simu-
lation code, where one typically wants to employ large numbers of
processors only for challengingly large problems, while small prob-
lem sizes are dealt with using correspondingly fewer processors.
A simultaneous variation of problem size and processor number
can alleviate all three of the scaling obstacles listed above. How-
ever, changing the problem size really means to change the physics
of the problem, and this aspect can be easily confused with bad
scaling when analysed superficially. For example, increasing the
problem size of a simulation of cosmological structure formation
either improves the mass resolution or the volume covered. In both
cases, typically more simulation time-steps will be required to in-
tegrate the dynamics, either because of better spatial resolution, or
because more massive systems of lower space-density can form.
The intrinsic computational cost of a simulation therefore typically
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Figure 19. Wall-clock time as a function of processor number for a full step of a 2703 dark matter simulation, using the TreePM mode of GADGET-2 with
5123 mesh cells. The two panels on top compare the scaling for the unclustered and strongly clustered states at z = 50 and z = 0, respectively, using an IBM
p690 cluster with the fast ‘Federation Switch’ communication system. The three panels on the bottom show scaling results for various clusters of workstations,
connected with different communication technologies. In all cases, solid circles show the total timings, while diamonds and triangles give the times for the tree
and PM parts of the code, respectively.
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Figure 20. Wall-clock times consumed by the test runs of the simulation
series. An extrapolation to the size of a 21603 simulation suggests that it
should require about 1.1 × 106 s on 1024 processors.

scales (sometimes considerably) faster than linear with the problem
size.

With these caveats in mind, we show in Fig. 20 the required
run times for a scaling experiment with cosmological �CDM dark

matter simulations, carried out with GADGET-2 on a cluster of IBM
p690 systems. In our series of five simulations, we have increased the
particle number from 106 to 108, in each step by roughly a factor of√

10. At the same time we also doubled the number of processors in
each step. We kept the mass and spatial resolutions fixed at values
of 109 h−1 M
 and ε = 5 h−1 kpc, respectively, i.e. the volume
of the simulations was growing in this series. We also increased
the size of the FFT mesh in lock step with the particle number. In
Table 2, we list the most important simulation parameters, while in
Fig. 20, we show the total wall-clock times measured for evolving
each of the simulations from high redshift to z = 0, as a function
of particle number. We note that the measurements include time
spent for computing on-the-fly FOF group catalogues, two-point
correlation functions, and power spectra for 64 outputs generated
by the runs. However, this amounts only to a few per cent of the
total CPU time.

We see that the simulation series in Fig. 20 follows a power law.
For a perfect scaling, we would expect T wall−clock ∝ N part/N cpu,
which would correspond to a power law with slope n = 1−log(4) �
0.4 for the series. Instead, the actually measured slope (fitted line) is
n = 0.52, slightly steeper. However, the perfect scaling estimate ne-
glects factors of log (N part) present in various parts of the simulation
algorithms (e.g. in the tree construction), and also the fact that the
larger simulations do need more time-steps than the smaller simu-
lations. In the series, the number of time-steps in fact increases by
23 per cent from S4 to S64. Overall, the scaling of the code is there-
fore actually quite good in this test. In fact, an extrapolation of the
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Table 2. Simulations performed for the scaling test. All runs
used the same mass and length resolutions of 1.03 × 109 h−1

M
 and 5 h−1 kpc, respectively, and were started at z init =
49. The runs used equal settings for force accuracy and time
integration parameters, and all were asked to produce the
same number of outputs, at which point they also carried
out group finding, power spectrum estimation and two-point
correlation function computation.

Name N CPU N part N FFT Lbox (h−1 Mpc)

S4 4 1003 1283 23.1
S8 8 1463 1923 33.8
S16 16 2163 2563 50.0
S32 32 3183 3843 73.6
S64 64 4643 5763 108.0
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Figure 21. Total elapsed wall-clock time per particle of each test run as a
function of cosmological scalefactor. The elapsed run times of each simula-
tion have been multiplied by the processor number, and normalized by the
particle number.

series to 21603 � 1.0078 × 1010 particles in a 500 h−1 Mpc box sug-
gests that such a simulation should be possible on 1024 processors
in about 1.1 × 106 s. This simulation has in fact been realized with
GADGET-2 in the first half of 2004, finishing on June 14. This ‘Mil-
lennium’ simulation by the Virgo consortium (Springel et al. 2005b)
is the largest calculation carried out with GADGET-2 thus far, and it
is also the largest high-resolution cosmological structure formation
simulation at present, reaching a dynamic range of 105 everywhere
in the periodic simulation box. The total wall-clock time required
for the simulation on the 512 processors actually used was slightly
below 350 000 h, only about 10 per cent more than expected from the
above extrapolation over two orders of magnitude. This shows that
GADGET-2 can scale quite well even to very large processor partitions
if the problem size is sufficiently large as well.

Finally, in Fig. 21 we show the cumulative CPU time consumed
for the five simulations of the series as a function of cosmological
scalefactor. We have normalized the total CPU time consumption,
T cpu = T wall-clock × N cpu, to the number of particles simulated, such
that a measure for the computational cost per particle emerges. To
first order, the required CPU time scales roughly linearly with the
scalefactor, and grows to the order of a few dozen milliseconds per
particle. At the time of the test run, the p690 cluster was not yet

equipped with its fast interconnection network, which led to the
comparatively poorer performance of the S64 simulation as a result
of the communication intensive PM part taking its toll. On current
high-end hardware (which is already faster than the p690 machine),
GADGET-2 reaches a total CPU cost of about 10 ms per dark matter
simulation particle in realistic simulations of cosmological structure
formation evolved from high redshift to the present.

7.3 Memory consumption

The standard version of GADGET-2 in TreePM mode uses 20 vari-
ables for storing each dark matter particle, i.e. 80 bytes per particle
if single precision is used. For each SPH particle, an additional 21
variables (84 bytes) are occupied. For the tree, the code uses 12
variables per node, and for a secondary data structure that holds the
centre-of-mass velocity and maximum SPH smoothing lengths of
nodes, another four variables. For a typical clustered particle dis-
tribution, on average about ∼0.65 nodes per particle are needed, so
that the memory requirement amounts to about 42 bytes per par-
ticle. Finally, for the FFTs in the PM component, GADGET-2 needs
three variables per mesh cell, but the ghost cells required around
local patches increase this requirement slightly. Taking four vari-
ables per mesh cell as a conservative upper limit, we therefore need
up to 16 bytes (or 32 bytes for double precision) per mesh cell for
the PM computation. This can increase substantially for two-level
PM computations, because we here not only have to perform zero
padding but also store the Green function for the high-resolution
region.

While being already reasonably memory-efficient, the standard
version of GADGET-2 is not yet heavily optimized towards a lean
memory footprint. This has been changed however in a special lean
version of the code, where some of the code’s flexibility was sacri-
ficed in favour of very low memory consumption. This version of the
code was used for the Millennium simulation described above. The
memory optimizations were necessary to fit the simulation size into
the aggregated memory of 1 TB available on the supercomputer par-
tition used. By removing explicit storage for long- and short-range
accelerations, particle mass and particle type, the memory require-
ment per particle could be dropped to 40 bytes, despite the need to
use 34-bit numbers for labelling each particle with a unique number.
The tree storage could also be condensed further to about 40 bytes
per particle. Because the memory for PM and tree parts of the grav-
itational force computation are not needed concurrently, one can
hence run a simulation with a peak memory consumption of about
80 bytes per particle, provided the Fourier mesh is not chosen too
large. In practice, one has to add to this some additional space for a
communication buffer. Also, note that particle-load imbalance as a
result of attempting to equalize the work-load among processors can
lead to larger than average memory usage on individual processors.

8 D I S C U S S I O N

In this paper, we have detailed the numerical algorithms used in
the new cosmological simulation code GADGET-2, and we have pre-
sented test problems carried out with it. We have emphasized the
changes made with respect to the previous public version of the
code. We hope that the improvements made in speed, accuracy and
flexibility will help future research with this code by allowing novel
types of simulations at higher numerical resolution than accessible
previously.

In terms of accuracy, the most important change of the code lies
in an improved time integration scheme, which is more accurate
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for Hamiltonian systems at a comparable number of integration
steps, and in an ‘entropy-conserving’ formulation of SPH, which
especially in simulations with radiative cooling has clear accuracy
benefits. Also, large-scale gravitational forces are more accurate
when the TreePM method is used, and offer reduced computational
cost compared to a pure tree code.

In terms of speed, the new code has improved in essentially all
of its parts thanks to a redesign of core algorithms, and a complete
rewrite of essentially all parts of the simulation code. For example,
the domain decomposition and tree construction have been acceler-
ated by factors of several each. Likewise, the SPH neighbour search
has been sped up, as well as the basic tree walk, despite the fact that
it now has to visit many more nodes than before due to the lower
order of the multipole expansion.

In terms of flexibility, the code can now be applied to more
types of systems, for example to zoom simulations with a two-level
TreePM approach, or to gas-dynamical simulations in two dimen-
sions. GADGET-2 also uses considerably less memory than before,
which makes it more versatile. The code can now be run on an ar-
bitrary number of processors, and has more options for convenient
I/O. Also, the code has become more modular and can be more
easily extended, as evidenced by the array of advanced physical
modelling already implemented in it, as discussed in Section 2.3.

In summary, we think GADGET-2 is a useful tool for simulation
work that will hopefully stimulate further development of numerical
codes. To promote this goal, we release GADGET-2 to the public.3

In a time of exponentially growing computer power, it remains an
ongoing challenge to develop numerical codes that fully exploit
this technological progress for the study of interesting astrophysical
questions.
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