Critical Tests of Theory of the Early Universe using the Cosmic Microwave Background

Eiichiro Komatsu, Max-Planck-Institut für Astrophysik Physics Colloquium, Universiteit Utrecht November 2, 2015

Breakthrough in Cosmological Research

 We can actually see the physical condition of the universe when it was very young

Sky in Optical (~0.5µm) courtesy University of Arizona

Sky in Microwave (~1mm)

Sky in Microwave (~1mm)

Light from the fireball Universe filling our sky (2.7K)

The Cosmic Microwave Background (CMB)

All you need to do is to detect radio waves. For example, 1% of noise on the TV is from the fireball Universe

The real detector system used by Penzias & Wilson The 3rd floor of Deutsches Museum

May 20, 1964 CMB Discovered

6.7-2.3-0.8-0.1= 3.5 ± 1.0 K

Schreiberaufzeichnung der ersten Messung des Mikrowellenhintergrundes am 20.5.1964

Recording of the first measurement of cosmic microwave background₂ radiation taken on 5/20/1964.

Origin of CMB

- When matter and radiation were hotter than 3000 K, matter was completely ionised. The Universe was filled with plasma, which behaves just like a soup
- This soup consists of:
 - Protons, electrons, and helium nuclei
 - Photons, neutrinos
 - Dark matter
- Dark matter provides a "gravitational potential," which can be thought of as a "soup bowl"

- WMAP was launched on June 30, 2001
- The WMAP mission ended after 9 years of operation

WMAP Spacecraft

No cryogenic components

Our Origin

 WMAP taught us that galaxies, stars, planets, and ourselves originated from tiny fluctuations in the early Universe

Kosmische Miso Soep

- When matter and radiation were hotter than 3000 K, matter was completely ionised. The Universe was filled with plasma, which behaves just like a soup
- Think about a Miso soup (if you know what it is).
 Imagine throwing Tofus into a Miso soup, while changing the density of Miso
- And imagine watching how ripples are created and propagate throughout the soup

Data Analysis

- Decompose temperature fluctuations in the sky into a set of waves with various wavelengths
- Make a diagram showing the strength of each wavelength

Measuring Abundance of H&He

Cosmic Pie Chart

- WMAP determined the abundance of various components in the Universe
- As a result, we came to realise that we do not understand 95% of our Universe...
 - H&He
 - Dunkle Materie
 - Dunkle Energie

Origin of Fluctuations

 Who dropped those Tofus into the cosmic Miso soup?

Leading Idea

- Quantum Mechanics at work in the early Universe (Mukhanov & Chibisov, 1981)
- · Werner Heisenberg's Uncertainty Principle:
 - · [Energy you can borrow] x [Time you borrow] ~ h
 - Time was very short in the early Universe =
 You could borrow a lot of energy
- Those energies became the origin of fluctuations
- How did quantum fluctuations on the microscopic scales become macroscopic fluctuations over cosmological sizes?

Starobinsky (1980); Sato (1981); Guth (1981); Linde (1982); Albrecht & Steinhardt (1982)

Cosmic Inflation

- In a tiny fraction of a second, the size of an atomic nucleus became the size of the Solar System
 - In 10⁻³⁶ second, space was stretched by at least a factor of 10²⁶

Stretching Micro to Macro

Quantum fluctuations on microscopic scales

Inflation!

- Quantum fluctuations cease to be quantum
- Become macroscopic, classical fluctuations

Key Predictions of Inflation

 Fluctuations we observe today in CMB and the matter distribution originate from quantum fluctuations generated during inflation

 There should also be ultra-long-wavelength gravitational waves generated during inflation

We measure distortions in space

A distance between two points in space

$$d\ell^{2} = a^{2}(t)[1 + 2\zeta(\mathbf{x}, t)][\delta_{ij} + h_{ij}(\mathbf{x}, t)]dx^{i}dx^{j}$$

- ζ: "curvature perturbation" (scalar mode)
 - Perturbation to the determinant of the spatial metric
- h_{ij}: "gravitational waves" (tensor mode)
 - Perturbation that does not change the determinant (area)

$$\sum_{i} h_{ii} = 0$$

Heisenberg's Uncertainty Principle

- [Energy you can borrow] x [Time you borrow] = constant
- Suppose that the distance between two points increases in proportion to a(t) [which is called the scale factor] by the expansion of the universe
- Define the "expansion rate of the universe" as

$$H \equiv \frac{\dot{a}}{a}$$
 [This has units of 1/time]

Fluctuations are proportional to H

- [Energy you can borrow] x [Time you borrow] = constant
- $H \equiv \frac{\dot{a}}{a}$ [This has units of 1/time]
- Then, both ζ and h_{ij} are proportional to H
- Inflation occurs in 10⁻³⁶ second this is such a short period of time that you can borrow a lot of energy!
 H during inflation in energy units is 10¹⁴ GeV

Predicted in 1981. Finally discovered in 2013 by WMAP and Planck

- Inflation must end
- •Inflation predicts $n_s \sim 1$, but not exactly equal to 1. Usually $n_s < 1$ is expected
- •The discovery of n_s<1 has been the dream of cosmologists since 1992, when the CMB anisotropy was first discovered and n_s~1 (to within 30%) was indicated

Slava Mukhanov said in his 1981 paper that n_s should be less than 1

How do we know that primordial fluctuations were of quantum mechanical origin?

Testing Gaussianity

[Values of Temperatures in the Sky Minus 2.725 K]/ [Root Mean Square]

Since a Gauss distribution is symmetric, it must yield a vanishing **3-point function**

$$\langle \delta T^3 \rangle \equiv \int_{-\infty}^{\infty} d\delta T \ P(\delta T) \delta T^3$$

More specifically, we measure this using temperatures at three different locations and average:

$$\langle \delta T(\hat{n}_1) \delta T(\hat{n}_2) \delta T(\hat{n}_3) \rangle$$

Non-Gaussianity:

A Powerful Test of Quantum Fluctuations

- The WMAP data show that the distribution of temperature fluctuations of CMB is very precisely Gaussian
 - with an upper bound on a deviation of 0.2%
- With improved data provided by the Planck mission, the upper bound is now 0.03%

CMB Research: Next Frontier

Primordial Gravitational Waves

Extraordinary claims require extraordinary evidence. The same quantum fluctuations could also generate gravitational waves, and we wish to find them

Tensor-to-scalar Ratio

$$r \equiv \frac{\langle h_{ij}h^{ij} \rangle}{\langle \zeta^2 \rangle}$$

 We really want to find this quantity! The current upper bound: r<0.1 [WMAP & Planck]

CMB Polarisation

• CMB is [weakly] polarised!

Stokes Parameters

23 GHz

23 GHz [13 mm]

33 GHz [9.1 mm]

41 GHz [7.3 mm]

61 GHz [4.9 mm]

94 GHz [3.2 mm]

How many components?

- CMB: $T_{v} \sim v^{0}$
- Synchrotron: $T_v \sim v^{-3}$
- Dust: $T_v \sim v^2$
- Therefore, we need at least 3 frequencies to separate them

Seeing polarisation in the WMAP data

- Average polarisation data around cold and hot temperature spots
- Outside of the Galaxy mask [not shown], there are 11536 hot spots and 11752 cold spots
- Averaging them beats the noise down

Radial and tangential polarisation around temperature spots

- This shows polarisation generated by the plasma flowing into gravitational potentials
- Signatures of the "scalar mode" fluctuations in polarisation
- These patterns are called "E modes"

Planck Data!

E and B modes

- Density fluctuations [scalar modes] can only generate E modes
- Gravitational waves can generate both E and B modes

E mode

B mode

Physics of CMB Polarisation

- Necessary and sufficient conditions for generating polarisation in CMB:
 - Thomson scattering
 - Quadrupolar temperature anisotropy around an electron

Origin of Quadrupole

- Scalar perturbations: motion of electrons with respect to photons
- Tensor perturbations: gravitational waves

Gravitational waves are coming toward you!

What do they do to the distance between particles?

Two GW modes

 Anisotropic stretching of space generates quadrupole temperature anisotropy. How?

GW to temperature anisotropy

GW to temperature anisotropy

- Stretching of space -> temperature drops
- Contraction of space -> temperature rises

Then to polarisation!

Polarisation directions are parallel to hot regions

March 17, 2014

BICEP2's announcement

First Direct Evidence of Cosmic Inflation

Release No.: 2014-05

For Release: Monday, March 17, 2014 - 10:45am

Cambridge, MA - Almost 14 billion years ago, the universe we inhabit burst into existence in an extraordinary event that initiated the Big Bang. In the first fleeting fraction of a second, the universe expanded exponentially, stretching far beyond the view of our best telescopes. All this, of course, was just theory. **SPACE & COSMOS**

The New Hork Times

Space Ripples Reveal Big Bang's Smoking Gun

By DENNIS OVERBYE MARCH 17, 2014

17. März 2014, 17:34 Gravitationswellen

Signale aus der Geburtsstunde des Universums Von Patrick Illinger

Cambridge, MA - Almost 14 billic that initiated the Big Bang. In the far beyond the view of our best tel

January 30, 2015

Joint Analysis of BICEP2 data and Planck data

SCIENCE

The New Hork Times

Speck of Interstellar Dust Obscures Glimpse of Big Bang

By DENNIS OVERBYE JAN. 30, 2015

30 January 2015 Last updated at 20:54 GMT

Cosmic inflation: New study says BICEP claim was wrong Süddeutsche.de

By Jonathan Amos

Science correspondent, BBC News

Share

1. Februar 2015, 22:19 Kosmologie

Urknall-Forscher gestehen Irrtum ein

Wissen

Von <u>Marlene Weiß</u>

Current Situation

- Planck shows the evidence that the detected signal is not cosmological, but is due to dust
- No strong evidence that the detected signal is cosmological

The search continues!!

JAXA

+ possibly NASA

LiteBIRD

2025- [proposed]

JAXA

+ possibly NASA

LiteBIRD

2025- [proposed]

Conclusion

- The WMAP and Planck's temperature data provide strong evidence for the quantum origin of structures in the universe
- The next goal: unambiguous measurement of the primordial B-mode polarisation power spectrum
- LiteBIRD proposal: a B-mode CMB polarisation satellite in 2025
- COrE++ (name TBD): proposal to ESA's M5 call under discussion