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Breakthrough in
Cosmological Research

* We can actually the physical condition of the
universe when it was very young
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All you need to do is to detect radio
waves. For example, 1% of noise on
the TV is from the fireball Universe









The real detector system used by Penzias & Wilson
The 3rd floor of Deutsches Museum
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Brightness

¢ Rocket (COBRA)
a Satellite (COBE/FIRAS)

¢ Ground-based
+ Balloon-borne
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 WMAP was launched on June 30, 2001

* The WMAP mission ended after 9 years of operation







WMAP Spacecraft

No cryogenic components

upper omni antenna

back to back
Gregorian optics,
1.4 x 1.6 m primaries

line of sight

passive thermal radiator

60K

focal plane assembly

feed horns
secondary
90K reflectors
— thermally isolated
instrument cylinder
300K

warm spacecraft with: _ _
- instrument electronics medium gain antennae
- attitude control/propulsion

- command/data handling deployed solar array w/ web shielding
- battery and power control

AP990422









Our Origin

 WMAP taught us that
galaxies, stars, planets,
and ourselves originated
from tiny fluctuations in
the early Universe






Kosmische Miso Suppe

* When matter and radiation were hotter than 3000 K,
matter was completely ionised. The Universe was
filled with plasma, which behaves just like a soup

* Think about a Miso soup (if you know what it is).
Imagine throwing Tofus into a Miso soup, while
changing the density of Miso

* And imagine watching how ripples are created and
propagate throughout the soup









Data Analysis

e Decompose temperature
fluctuations in the sky into a
set of waves with various
wavelengtns

* Make a dilagram showing the
strength of each wavelength
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Measuring lotal Matter Densl ty
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Cosmic Pie Chart

® VWMAP determined the
abundance of various

components in the
Universe

® As aresult, we came to
realise that we do
not understand 95%
of our Universe...

® H&He € Dark Matter
@ Dark Energy



Origin of Fluctuations

INto the cosmic Miso

 \Who dropped those Tofus

Soup”




Mukhanov & Chibisov (1981); Guth & Pi (1982); Hawking (1982); Starobinsky (1982);
Bardeen, Turner & Steinhardt (1983)

| eading ldea

- Quantum Mechanics at work in the early Universe
e Uncertainty Principle:
* [Energy you can borrow] x [Time you borrow] ~ h

 [ime was very short in the early Universe = You could
borrow a lot of energy

- Those energies became the origin of fluctuations

 How did quantum fluctuations on the microscopic scales

pecome macroscopic fluctuations over cosmological
Sizes”




Starobinsky (1980); Sato (1981); Guth (1981), Linde (1982); Albrecht & Steinhardt (1982)

Cosmic Inflation

* In atiny fraction of a second, the size of an atomic
nucleus became the size of the Solar System

* |n 10-36 second, space was stretched by at least
a factor of 1026



Stretching Micro to Macro

Quantum fluctuations on
MICroscopic scales
mum fluctuations cease tom

 Become macroscopic, classical fluctuations




Key Predictions of Inflation

* Fluctuations we observe today in CMB and
the matter distribution originate from quantum
fluctuations generated during inflation

scalar
mode

gravitational waves generated during inflation

h .« * Ihere should also be ultra-long-wavelength

tensor
mode




We measure distortions
N space
« A distance between two points in space
di® = a®(t)[1 + 2¢(x,1)][0;; + hi;(x,t)]da" da’
e {: “curvature perturbation” (scalar mode)
* Perturbation to the determinant of the spatial metric

* Ny “gravitational waves” (tensor mode)

e Perturbation that does not change the determinant (area)

Zh@-i:o



Helsenberg's
Uncertainty Principle

* [Energy you can borrow] x [Time you borrow]| =
constant

* Suppose that the distance between two points
increases in proportion to a(t) [which is called the
scale factor] by the expansion of the universe

* Define the “expansion rate of the universe” as

= g [ This has units of 1/time]



Fluctuations are
oroportional to H

|[Energy you can borrow] x [ Time you borrow| =
constant
= g [ This has units of 1/time]

Then,

Inflation occurs in 10-36 second - this is such a short
period of time that you can borrow a lot of energy!
H during inflation in energy units is 1014 GeV



WMAP Collaboration
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Residual Amplitude of Waves [pK?]
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Residual Amplitude of Waves [pK?]
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e|nflation must end

°|N

-
=

Predicted in 1981,
Finally discovered in 2013
by WMAP and Planck

lation predicts n_~1, but not exactly

€C

‘The discovery of n_<1 has been the
dream of cosmologists since 1992,
when the CMB anisotropy was first

ual to 1. Usually n_<1 Is expectea

discovered and n_~1 (to within 30%) 1 o
was indicated Slava Mukhanov said in

his 1981 paper that ns
should be less than 1



How do we kKnow that
orimordial fluctuations were of
quantum mechanical origin’
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Fraction of the Number of Pixels

Testing (Gaussianity

................. Since a Gauss distribution
W band 1 IS symmetric, it must yield a
vanishing 3-point function

(6T°) = / N déT P(6T)6T?

— OO

More specitically, we measure
Histogram: WMAP Data

. | this using temperatures at
- Redline: Gaussian I three different locations anc

4 3 2 0 1 2 3 4 average.

[Values of Temperatures in the Sky Minus A ~ A
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Having Those Temperatures




* The WMA

fempe
(Gauss

Non-Gaussianity:

A Powerful Test of Quantum Fluctuations
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CMB Research:
Next Frontier

Primordial
Gravitational Waves

Extraordinary claims require extraordinary evidence.
The same quantum fluctuations could also generate
gravitational waves, and we wish to find them



Measuring GW

 GW changes the distances between two points
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| |GO detected GW from binary
blackholes, with the wavelength
of thousands of kilometres

But, the primordial GW affecting
the CMB has a wavelength of
billions of light-years!! How

do we find it?



Detecting GW by CMB

|sotropic electro-magnetic fields



Detecting GW by CMB

GW propagating In isotropic electro-magnetic fields
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Detecting GW by CMB

Space is stretched => Wavelength of light is also stretched
.
@




Detecting GW by CMB

Polarisation
Space is stretched => Wavelength of light is also stretched
.
o
hot ¢
.
electron &

3




Detecting GW by CMB
Polarisation

Space is stretched => Wavelength of light is also stretched




Photo Credit: TALEX
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Photo Credit: TALEX




f polarisation from GW
'S found...

e Then what?

* The next step is to nail the specific model of
inflation



lensor-to-scalar Ratio

(hijh™)

(¢%)

* We really want to find this quantity!
The current upper bound:

A



Tensor—to—Scalar Ratio (r)

WMAP Collaboration
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Planck Collaboration (2015); B/CEPZ/Keck Collaboration (2016)
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March 17, 2014

BICEP2’s announcement
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First Direct Evidence of Cosmic Inflation
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Cambridge, MA - Almost 14 billion years ago, the universe we inhabit burst into existence in an extraordinary event
that initiated the Big Bang. In the first fleeting fraction of a second, the universe expanded exponentially, stretching
far beyond the view of our best telescopes. All this, of course, was just theory.
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January 30, 2015

Joint Analysis of BICEP2 data and Planck data
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Current Situation
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 No strong evidence that the detected signal
IS cosmological

We Can Do It!

The search continues!!
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Conclusion

« The WMAP and Planck’s temperature data provide

strong evidence for the quantum origin of structures
in the universe

* [he next goal: unambiguous measurement of
polarisation from gravitational waves

* LiteBIRD proposal: a CMB polarisation satellite in 2025



Physics of CMB Polarisation

Quadrupole

Anisotropy
Isotropy

Thomson
Thonmson '

Scatfering — ! Scattering

Linear
Polarization

By Wayne /—/ U Na Polarization

* Necessary and sufficient conditions for generating
polarisation in CMB:

 [Thomson scattering

* Quadrupolar temperature anisotropy around an electron



