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Where is a galaxy cluster?

Subaru image of RXJ1347-1145 (Medezinski et al. 2010) 
http://wise-obs.tau.ac.il/~elinor/clusters
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Subaru image of RXJ1347-1145 (Medezinski et al. 2010) 
http://wise-obs.tau.ac.il/~elinor/clusters

Subaru
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Hubble image of RXJ1347-1145 (Bradac et al. 2008)

Hubble
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Chandra X-ray image of RXJ1347-1145 
(Johnson et al. 2012)

Chandra
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Chandra X-ray image of RXJ1347-1145 
(Johnson et al. 2012)ALMA Band-3 Image of the 

Sunyaev-Zel’dovich effect at 92 GHz 
(Kitayama et al. 2016)

ALMA!
5” resolution
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1σ=17 μJy/beam 
=120 μKCMB



A clear displacement between 
the X-ray and SZ images. What is going on?
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Multi-wavelength Data

Optical:  
•102–3 galaxies 
•velocity dispersion 
•gravitational lensing

X-ray:  
•hot gas (107–8 K) 
•spectroscopic TX 
•Intensity ~ ne2L

IX =

Z
dl n2

e⇤(TX)

SZ [microwave]:  
•hot gas (107-8 K) 
•electron pressure 
•Intensity ~ neTeL

ISZ = g⌫
�T kB
mec2

Z
dl neTe



A Story about RXJ1347–1145
• Let me tell you a little story about this particular 

cluster, which highlights the unique power of the 
SZ data to study cluster astrophysics 

• A massive cluster with 1015 Msun at z=0.45 

• The most X-ray luminous galaxy cluster found 
in the ROSAT All Sky Survey 

• Very compact, “cool core” cluster
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1997
ROSAT/HRI image 
[Schindler et al.] 

5” resolution

• 0.1–2.4 keV 

• Looked pretty 
“spherical” 

• Thought to be a 
typical, relaxed, 
cooling-flow cluster
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Chandra X-ray image of RXJ1347-1145 
(Johnson et al. 2012)

2001
SZ w/ Nobeyama 
[Komatsu et al.] 
12” resolution

• The highest 
angular resolution 
SZ mapping at 
that time 

• (The record holder 
for a decade) 

• A surprise!
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2002
X-ray w/ Chandra 

[Allen et al.]

• 0.5–7 keV 

• An excess X-ray 
emission found at 
the location of the 
SZ excess 

• A hot gas, missed 
by ROSAT due to 
the lack of 
sensitivity at high 
energies!



A lesson learned
• X-ray observations are band-limited 

• They are not usually not sensitive to very hot gas with 
temperature >10(1+z) keV 

• SZ observations are not band-limited 

• They are in principle sensitive to arbitrarily high 
temperatures (more precisely, pressure) 

• SZ data probe electron pressure: a good probe of 
shock-heated gas due to mergers 

• RXJ1347–1145 was thought to be a relaxed cluster. 
Our Nobeyama data challenged it, and now it is 
accepted that this cluster is a merging system! 17



We have ALMA. Now what?

• What is a new science we can do with such high 
resolution, high sensitivity measurements? 

• Finding shocks and hot clumps is fun, but can 
we do something new and more quantitative? 

• One example: Pressure fluctuations
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SZ

X-ray
Let’s subtract  

a smooth component
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SZ

X-ray
Let’s subtract  

a smooth component

Kitayama et al., in prep
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SZ

X-ray
Let’s subtract  

a smooth component

Kitayama et al., in prep

Gas density is stirred 
(“sloshed”), but no change in 
pressure! Not sound waves 

=> Unique measurements of the 
effective equation of state of 

density fluctuations
21



Coma

R. Khatri & M. Gaspari (2016)Planck Collaboration (2013)



Coma

R. Khatri & M. Gaspari (2016)Planck Collaboration (2013)

They detected pressure 
fluctuations in outskirts of 

Coma that are consistent with 
the sound waves



A Picture
• In the outskirts of a galaxy cluster, mass still accretes, 

creating weak shocks (M~a few) 

• The effective equation of state of pressure fluctuations 
is adiabatic 

• In the core of a cluster, gas is just pushed around by 
sloshing, buoyancy, etc, without changing pressure 

• The effective equation of state of pressure fluctuations 
is isobaric 

• This kind of study has been done by “pressure” 
estimated from X-ray data (Churazov et al. 2012; 2016; 
many others), but we can finally do this with real 
pressure from high-resolution SZ data! 24



Secondary Anisotropies:  
Structure Formation seen in the CMB

• Matter bends light of the CMB 

• Electrons in hot, collapsed gas up-scatter low-energy 
CMB photons, distorting the black-body spectrum of 
the CMB 

• Both have been measured, providing the key insights 
into how the structures grew out of initial conditions. 
Initial conditions to structure formation, using the 
CMB data only!

Gravitational Lensing

Sunyaev-Zel’dovich Effect

25
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Basak, Prunet & Benumbed (2008)

�Tintrinsic(n̂) 27



Basak, Prunet & Benumbed (2008)

�Tlensed(n̂)

= �Tintrinsic(n̂+r�)
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Planck Collaboration

From full-sky temperature maps to…
29



A full-sky lensing potential map!

Planck Collaboration
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Theory fits!!

…and our knowledge of the matter distribution improves
⌦m = 0.315± 0.013

�8 = 0.829± 0.014
Adding the 
lensing info

Planck Collaboration

⌦m = 0.308± 0.012

�8 = 0.8149± 0.0093





Full-sky Thermal Pressure Map
North Galactic Pole South Galactic Pole

Planck Collaboration
33



We can simulate this
arXiv:1509.05134

• Volume: (896 Mpc/h)3 

• Cosmological hydro (P-GADGET3) with star formation 
and AGN feed back 

• 2 x 15263 particles (mDM=7.5x108 Msun/h)

[accepted for publication in MNRAS]
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Klaus Dolag (MPA/LMU)



Dolag, EK, Sunyaev (2016)
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• “The local universe simulation” reproduces the 
observed structures pretty well



Dolag, EK, Sunyaev (2016)
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1-point PDF fits!!

Dolag, EK, Sunyaev (2016)
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Power spectrum fits!!
provided that we use:
⌦m = 0.308

�8 = 0.8149

Dolag, EK, Sunyaev (2016)
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Simple Interpretation

• Randomly-distributed point sources 
= Poisson spectrum = ∑i(fluxi)2 / 4π

multipole

C
l  [

no
t “

l2 C
l”]
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Simple Interpretation

• Extended sources = the power 
spectrum reflects intensity profiles

multipole

C
l  [

no
t “

l2 C
l”]
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Multipole

l(l
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)C
l/2
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 [μ
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]
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Simple Formula

• yl with small l just gives the total thermal pressure, 
MT ~ M5/3 

• Heavily weighted by massive clusters  

• The mass function, dn/dM, is sensitive to the 
amplitude of fluctuations, σ8

C` =

Z
dz

dV

dz

Z
dM

dn

dM
|y`(M, z)|2
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2d Fourier transform  
of pressure



Komatsu & Kitayama (1999)

Degree-scale SZ power spectrum 
is less sensitive to astrophysics in cluster cores1999
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McCarthy et al. (2014)

2014
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confirmed by 
simulations with 

varying AGN feedback



It is very sensitive to the amplitude of fluctuations

Komatsu & Kitayama (1999)
Komatsu & Seljak (2002)

1999
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McCarthy et al. (2014)

tension?

Planck13 parameters

2014
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McCarthy et al. (2014)

Planck13 parameterssimilar to planck15

2014
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Dolag, EK, Sunyaev (2016)
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~20% too large



C` / ⌦3
m�8
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⌦m = 0.308

�8 = 0.8149

⌦m = 0.315

�8 = 0.829
vs

Dolag, EK, Sunyaev (2016)
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~20% too large

But, it needs a proper Markov 
Chain parameter exploration. 

Almost done
(Bolliet, et al, in prep)



Codes (CRL)
http://wwwmpa.mpa-garching.mpg.de/~komatsu/crl/
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Standard ΛCDM Model, starting with 
inflation producing adiabatic, 

Gaussian, isotropic, ns<1 primordial 
fluctuations fit all the data from the 

initial condition to structure 
formation! 

These results are all solely based on the 
microwave background data



Toward more satisfaction

• The key ingredient of the power spectrum is a 
profile of thermal pressure of electrons

• We can simulate this… but, it would be great to 
understand it physically before trusting our results 
on σ8 from the SZ power spectrum on large scales

C` =

Z
dz

dV

dz

Z
dM

dn

dM
|y`(M, z)|2
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McDonald et al. (2014)

The pressure profiles in Dolag’s simulations agree well 
with those measured by Planck



McCarthy et al. (2014)

Pressure in the cluster outskirts 
[which dominates the total 

pressure] does not seem too 
sensitive to models of AGN 
feedback. Thus, there is a 
hope to understand this?
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Hydrostatic Equilibrium

• We now know a lot about the matter distribution in 
galaxy clusters (i.e., NFW profile) 

• Why can’t we just compute the gas pressure by 
balancing it against gravity of an NFW profile?

• We can. But, it will give you the total pressure, 
rather than thermal pressure

1

⇢gas(r)

@Pgas(r)

@r
= �GM(< r)

r2

Makino, Sasaki & Suto (1998); Komatsu & Seljak (2001)
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Non-thermal Pressure
• The HSE equation 

• includes the total pressure; however, not all 
kinetic energy of in-falling gas is thermalised 

• There is evidence that there is significant non-
thermal pressure support coming from bulk 
motion of gas (e.g., turbulence) 

• Therefore, the correct equation to use would be

1

⇢gas(r)

@Pgas(r)

@r
= �GM(< r)

r2

1

⇢
gas

(r)

@[P
th

(r) + P
non�th

(r)]

@r
= �GM(< r)

r2

Not including Pnon-th leads to overestimation of the thermal pressure!
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• Simulations by Shaw et al. show that the non-thermal 
pressure [by bulk motion of gas] divided by the total 
pressure increases toward large radii. But why?

Shaw, Nagai, Bhattacharya & Lau (2010)
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• Battaglia et al.’s simulations show that the ratio 
increases for larger masses, and…

Battaglia, Bond, Pfrommer & Sievers (2012)
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AGN feedback, z = 0
1.1 x 1014 MO • < M200 < 1.7 x 1014 MO •

1.7 x 1014 MO • < M200 < 2.7 x 1014 MO •

2.7 x 1014 MO • < M200 < 4.2 x 1014 MO •

4.2 x 1014 MO • < M200 < 6.5 x 1014 MO •

6.5 x 1014 MO • < M200 < 1.01 x 1015 MO •

1.01 x 1015 MO • < M200 < 1.57 x 1015 MO •

Shaw et al. 2010
Trac et al. 2010

 R500  Rvir 
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• …increases for larger redshifts. But why?

Battaglia, Bond, Pfrommer & Sievers (2012)
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Shaw et al. 2010, z = 0
Shaw et al. 2010, z = 1

 R500  Rvir 
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Analytical Model for Non-
Thermal Pressure

• Basic idea 1: non-thermal motion of gas in clusters is 
sourced by the mass growth of clusters [via mergers 
and mass accretion] with efficiency η 

• Basic idea 2: induced non-thermal motion decays 
and thermalises in a dynamical time scale 

• Putting these ideas into a differential equation:

Shi & Komatsu (2014)

[σ2=P/ρgas]
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Finding the decay time, td

• Think of non-thermal motion as turbulence 

• Turbulence consists of “eddies” with different sizes
64



Finding the decay time, td

• Largest eddies carry the largest energy 

• Large eddies are unstable. They break up into smaller 
eddies, and transfer energy from large-scales to small-
scales 65



Finding the decay time, td
• Assumption: the size of the largest eddies at a radius r 

from the centre of a cluster is proportional to r 

• Typical peculiar velocity of turbulence is

v(r) = r⌦(r) =

r
GM(< r)

r

• Breaking up of eddies occurs at the time scale of

td ⇡ 2⇡

⌦(r)
⌘ tdynamical

• We thus write:
td ⌘ �

2
tdynamical 66



Dynamical Time

• Dynamical time increases toward large radii. Non-thermal 
motion decays into heat faster in the inner region

Shi & Komatsu (2014)
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Source term

• Define the “growth time” as

t
growth

⌘ �2
tot

✓
d�2

tot

dt

◆�1
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Growth Time

• Growth time increases toward lower redshifts and smaller 
masses. Non-thermal motion is injected more efficiently at 
high redshifts and for large-mass halos

Shi & Komatsu (2014)
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approximate fit to

hydro simulations

η = turbulence  
injection efficiency

β = [turbulence  
decay time] / 2tdyn

Non-thermal fraction increases  
with radii because of slower  
turbulence decay in the outskirts

Shi & Komatsu (2014)
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η = turbulence  
injection efficiency

β = [turbulence  
decay time] / stdyn

Non-thermal fraction  
increases with redshifts 
because of faster mass  
growth in early times

Shi & Komatsu (2014)
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With Pnon-thermal computed

• We can now predict the X-ray and SZ observables, 
by subtracting Pnon-thermal from Ptotal, which is fixed 
by the total mass 

• We can then predict what the bias in the mass 
estimation if hydrostatic equilibrium with thermal 
pressure is used
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Shi & Komatsu (2014)

Excellent match 
with observations! 
[black line versus green dashed]

73



Summary
• New results on the SZ effect, from small to large: 

1. The first SZ image by ALMA - opening up a new 
study of cluster astrophysics via pressure 
fluctuations 

2. The SZ power spectrum at l<1000 has been 
determined finally! Next: to get σ8 out of it 

3. We now understand, quantitatively, the origin and 
distribution of non-thermal pressure in cluster 
outskirts 74

B. Bolliet

T. Kitayama

K. Dolag

X. Shi



Compton Y Map of RXJ1347–1145
ALMA

on-source integration times 
5.6 hours with 7-m array 
2.6 hours with 12-m array

Thank you TAC!


