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A Simple Question

e How do the cosmic structures evolve In an over-
dense region”
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Integrated Bispectrum, /B(k)

e Correlating the local over-densities and power
spectra, we obtain the “integrated bispectrum™:

N3
1 cut . ~
= > Pk rr)o(rs)

cut i=1

iBL(k) =

* This is a (particular configuration of) three-point
function! The three-point function in Fourier space
IS the bispectrum, and is defined as
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Integrated Bispectrum, /B(k)

e Correlating the local over-densities and power
spectra, we obtain the “integrated bispectrum™:

N3

cut

N3 S Pk, rr)d(rs)

cutz-l

iBL(k) =

* [he expectation value of this quantity is an integral
of the bispectrum that picks up the contributions
mostly from the squeezed limit:

k
iBy(k) = (P(k r.)s Mq&"’q’
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tek/ng the squeezed //m/t end
then angular averaging” X Wi (Q1)WL(_Q1 — Q3)WL(Q3)




Power Spectrum Response

* [he integrated bispectrum measures how the local
power spectrum responds to Its environment, I.e., a
long-wavelength density fluctuation

zero bispectrum
positive squeezed-limit
bispectrum

overdensity underdensity



Response Function

e S0, let us Taylor-expand the local power spectrum
in terms of the long-wavelength density fluctuation:

A dP (k)

P(karL) — P(k)|3 0 dg 3 5
6=0

* The integrated bispectrum is then give as

response function




Response Function:
N-body Results

* Almost a constant, but a weak scale dependence,
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and clear BAO features. How do we understand this?




Non-linearity generates
pispectrum

e |f the initial conditions were Gaussian, linear
perturbations remain Gaussian

 However, non-linear gravitational evolution makes density
fluctuations at late times non-Gaussian, generating non-
vanishing bispectrum

0'+ V- [(1+0)v]=0,

vV +(v-V)v=—Hv- Vg,
V¢ = 4nGa*pé



Standard Perturbation Theory

[lustrative Example: SPT

* Second-order perturbation gives the lowest-order
(“tree-level”) bispectrum as

Bspr(ky, ko, ks) = 2[P;(k1) P, (ky) Fy(ky, ko) + 2 cyclic

“I” stands for “linear”

5 1ky -k, (ki k 2 (ky - ko\?
Fg(kl,kg): . 1 2(1| 2)+_( 1 2)

7 2 kiks \ko ki 7\ kiko

e Then

| 2k [ d3 d’
iBr(k V2/ / = / Q3 B(k — qi1,—k +qi +q3, —q3)

X Wr(a1)Wr(—aq1 — a3)Wr(qs)




[lustrative Example: SPT

* Standard Eulerian perturbation theory gives the
lowest-order (“tree-level”) bispectrum as

BSPT(kla kz, k3) — Z[Pl(kl)Pl(kg)FQ(kl, kz) + 2 CYCHC]

“I” stands for “linear”

5 1k;-ko (k1 ko 2 (k- ko\°
Fo(ki. ko) = = 4 | N
2k ko) = 7 4+ 55— (kz /ﬂ) +7( K1k )

e Then

. - | 1dlnk’P(k)"




[lustrative Example: SPT

* Standard Eulerian perturbation theory gives the
lowest-order (“tree-level”) bispectrum as

BSPT(kla kg, kg) — Q[Pl(kl)Pl(k'z)Fz(kl, kg) + 2 CYCHC]

“I” stands for “linear”

5 1ky -k, (ki k 2 (ky - ko\?
Fz(k1,kz)= , 1 2(1| 2>_|__( 1 2)

7 | 9 kl k.2 ]{;2 | k’l 7 klkz
» Then _Response, dinP(k)/do_

. [68 1dnk*P(k)]

1B k) k=0 l Fi(k)or
Lspr(k) 121 3 dlnk | k)




Tree-level SPT comparison
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Lemaitre (1933); Peebles (1980)

Separate Universe
Approacnh

* The meaning of the position-dependent power
spectrum becomes more transparent within the
context of the “separate universe approach”

 Each sub-volume with un over-density (or under-
density) behaves as If it were a separate universe
with different cosmological parameters

* |n particular, if the global metric is a flat FLRW, then
each sub-volume can be regarded as a different
FLRW with non-zero curvature



Mapping between two
cosmologies

* The goal here Is to compute the power spectrum in
the presence of a long-wavelength perturbation o.
We write this as P(k,al|0)

 We try to achieve this by computing the power
spectrum in a modified cosmology with non-zero
curvature. Let us put the tildes for quantities
evaluated in a modified cosmology

P(k,a) — P(k,ald)




Separate Universe
Approach: The Rules

We evaluate the power spectrum in both
cosmologies at the same physical time and same
physical spatial coordinates

* Thus, the evolution of the scale factor is different:

a(t) = a(t) |1 — %5(1&)

*tilde: separate universe cosmology



Separate Universe
Approach: The Rules

 We evaluate the power spectrum in both

cosmologies at the same physical time and same
physical spatial coordinates

* Thus, comoving coordinates are different too:

X = ?(t)x: 1 ;5_(t) X

a(t)

*tilde: separate universe cosmology




Fffect 1: Dilation

 Change in the comoving coordinates gives
din(k3P)/dInk

Pk,t) —

Pt |1

1—-4(t)] P(k,t) |1

|7 (s [r330] o

1dln P(k t)

3 dlnk
1dIn k3P(k t)

3 dlnk o ) |

5()




Effect 2: Reference Density

 Change in the denominator of the definition of o:

~y B0~ 2~~ ~

Pk,t) = [1+6(t)]" Pk, t) = [1+25(t)] P(k,t)

e Putting both together, we find a generic formula,
valid to linear order in the long-wavelength 6:

—
—

' 1dInk*P(k,t)
VR

= P (k) a -1 o —5(0')- ) -1 T (2 - g dlnk ) 5(0')—




Example: Linear P(k)

* |et's use the formula to compute the response of
the linear power spectrum, Pi(k), to the long-
wavelength ©. Since P, ~ D2 [D: linear growth],

(e [ 1s Ty (Plel-3@D)) .,
Pz(k, L 35<>)( o )Plo«,)

« Spherical collapse model gives

> (a :1 _ %5(@:) ~ D(a) :1 * 15(a)-




Response of Pi(k)

e Then we obtain;

dln P(k,a) 68 1dlnk°P(k,a)

dé(a) 21 3 dlnk

« Remember the response computed from the tree-
level SPT bispectrum:

. - | 1dink3P(k)

-+ S0, the tree-level SPT bispectrum gives the
response of the linear P(k). Neat!!



Response of P1-oop(K)

/
e S0, let’s do the same using third-order perturbation
’[heory! P(k, 0,) o H(k, a) + ng(k, Cl,) + 2P13(k', CL)

d3q
Pa(ka) =2 [ 55455 P(a.0)P(k = dl,0) [Fr(a.k - o))
27k? > dq
2P3(k,a) = . Pl(k:,a)/o (27)? P(q,a)
i 2 2 4
qa B 58 | 3 9 98072 2 k+q
X 10035 — 188+ 125 42,5 + 15 5(0° — K)° (2K + 7¢°) o <|k_q|)

e Then we obtain;

din P(k,a) 68 1dInk’P(k,a) 26 Py(k,a)+ 2P3(k,a)

dd(a) 21 3  dlnk 21 P(k,a)




1-loop does a decent job

1-loop .
--- |inear

0.1 0.2 0.3 0.4
k [h Mpc ']



This is a powertful formula

P(k,al|é) = P (k,a

-
_1 — gé(a)

)

* [he separate universe description is powerful, as it

1+

9 _ _
3

1 dIn k3P(k, a)

dlnk

provides physically intuitive, transparent, and

straightforward way to compute the effect of a long-

wavelength perturbation on the small-scale
structure growth

)

* The small-scale structure can be arbitrarily non-

linear!

5(0,)-




This is a powertful formula

P(k,a|5) = P (k . :1 - %g(a):> :1 T (2 _ 1dink"P(k, “)) g(a):

3 dlnk

 How can we compute \tilde{P}(k,a) in practice?

 Small N-body simulations with a modified
cosmology (“Separate Universe Simulation™)

* Perturbation theory

 We can compute the bispectrum with n-th order
PT by the power spectrum in (n—1)-th order PT!




SDSS-/BOSS DR11

 OK, now, let’s look at the real data (BOSS DR11) to
see If we can detect the expected influence of
environments on the small-scale structure growth

* Bottom line: we have detected the integrated
bispectrum at 7.40. Not bad for the first detection!
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Results: XZ/DOF 46.4/38
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Because of complex geometry of DR11 footprint, we use the
local correlation function, instead of the power spectrum.
Power spectrum will be presented using DR12 in the future

. Integrated three-point function, iC(r), is just Fourier transform

of IB ’I,CL( ) / (;Zﬂ—k)::; Z-BL(k)eir.k




Results: XZ/DOF 40. 4/38
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Nice, but what is this good for?

* Primordial non-Gaussianity (“local-type faL”)

* The constraint from BOSS is work in progress,
but the Fisher matrix analysis suggests that the
iIntegrated bispectrum is a nearly optimal
estimator for the local-type fnL

* We no longer need to measure the full
bispectrum, it we are just interested in fy'ocall



Nice, but what is this good for?

 \We can also learn about galaxy bias
e Local bias model:
o Og(X)=b10m(x)+(b2/2)[Om(X)]2+...
 The bispectrum can give us b: at the leading

(tree-level) order, unlike for the power spectrum
that has b2 at the next-to-leading order



Result on bo

 We use the simplest, tree-level SPT bispectrum in

redshift space with the local bias model to interpret
our measurements

e [We also use information from BOSS’s 2-point

correlation function on fos and BOSS’s weak
lensing data on os]

- we find: B2 = 0.41 = 0.41



More on bo

* Using slightly more advanced models, we find:

baseline eff kernel tidal

bias both*

0.41 041 0.51

0.41 0.48 -

-0.41  0.60 =

- 0.41

*The last value is in agreement with bo found by the

Barcelona group (Gil-Marin et al. 2014) that used the
full bispectrum analysis and the same model




Separate Universe Simulation

 How do we compute the response function beyond
perturbation theory?

* Do we have to run many big-volume simulations and
divide them into sub-volumes? No.

* Fully non-linear computation of the response function is
possible with separate universe simulations

 E.g., we run two small-volume simulations with separate-
universe cosmologies of over- and under-dense regions
with the same Initial random number seeds, and
compute the derivative dinP/do6 by, e.qg.,

dinP(k) InP(k|+9)—InP(k| —0)
s 26




Separate Universe Cosmology

Ho = Ho[1+0x]
Qm — Qm[l + 5H]_2
Qa = Qa1 +0x] 72



fractional difference in the
power of the fundamental mode

)/D) -1

...... Expansuon to the 4th order in §,
ar . 13 71 20609
D(t) = D(¢) [1 + 5700(t) + 7502 (1) + 15007501 (¢)
4 | 691858 5
oo 01 (1) + O(6% (1))

2
1
O b T
-1 ! L !
-1 -0.5 0 0.5 1
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* The symbols are the data points with error bars. You
cannot see the error bars!
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Ro=d?INP/do2

k [h Mpc '] k [h Mpc™']

 More derivatives can be computed by using
simulations run with more values of 0



R3=d3InP/do3

k [h Mpc™'] k [h Mpc™']

* But, what do dninP/ddé"™ mean physically??



More derivatives: Squeezed
Imits of N-point functions

k1 .
- k
k2 /' Ry: 3-point function
R2: 4-point function
R3: 5-point function
BN: N=2-point function

s ¥ = k=Y R

 Why do we want to know this”? | don’t know, but it is
cool and they have not been measured betore!




One more cool thing

 \We can use the separate universe simulations to
test validity of SPT to all orders in perturbations

* [he fundamental prediction of SPT: the non-linear
power spectrum at a given time is given by the
inear power spectra at the same time

* |n other words, the only time dependence arises
from the linear growth factors, D(t)



One more cool thing

 \We can use the separate universe simulations to
test validity of SPT to all orders in perturbations

& +V-[(1+4+v]=0,
v+ (v-V)v=—-Hv-V¢,
V¢ = 4nGa’pé |

SPT at all orders: Exact solution of

the pressureless fluid equations

We can test validity of SPT as a description of collisions particles



Example: P1-oop(K)

e “1-loop” SPT [3rd order]
P(k, CL) — H(k‘, a) + sz(k', a) -+ 2P13(k, a)

d3
Pu(ka) =2 [ 555 Pla, )Pk~ al,0) [Fa(a k — @)
2mk? > dq
2P13(k)a’) — 252 B(k7a)A (271_)3 Pl(q)a’)
i 2 2 4
a k= o4 3 2 12131012 2 k+q
X IOOk_2 158—i—12q2 42k4+k5q3(q k°)°(2k +7q)ln(|k_q|)

e The only time-dependence is in P(k,a) ~ D%(a)

e |s this correct?



Rescaled simulations vs
Separate universe simulations

e Jo test this, we run two sets of simulations.

* First: we rescale the initial amplitude of the power
spectrum, so that we have a given value of the linear
power spectrum amplitude at some later time, tout

 Second: full separate universe simulation, which

changes all the cosmological parameters consistently,
given a value of 6

 We choose 0 so that it yields the same amplitude of
the linear power spectrum as the first one at tout



Results: 3-point function

1 1 I

(&
|
o

rescaled amplitude
- separate universe

-
o0
1- I 1 1 | 1 1

——
—
—

E

= 0.2+ 1 ;
~

\:‘ /
5 0.0F -+ .

107 10 10° 10° 10" 10°
k [h Mpc™] k [h Mpc ™|

* Jo isolate the effect of the growth rate, we have
removed the dilation and reference-density effects
from the response functions



Results: 4-point function
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* Jo isolate the effect of the growth rate, we have
removed the dilation and reference-density effects
from the response functions



Results: 5-point function

: : : :
z=0 z2=2
rescaled amplitude T
-=-=-+- separate universe

M |

'''''

---------------------- gasnnnnn . RN R

-
1

-

e

10” 10° 107 10"
k [h Mpc™] k [h Mpc™]

* Jo isolate the effect of the growth rate, we have
removed the dilation and reference-density effects
from the response functions




Break down of SPT at all orders

- At z=0, SPT computed to all orders breaks down at
k~0.5 Mpc/h with 10% error, in the squeezed limit 3-
point function

- Break down occurs at lower Kk for the squeezed limits
of the 4- and 5-point functions

- Break down occurs at higher k at z=2

- | find this information quite useful: it quantifies accuracy
of the perfect-fluid approximation of density fields



summary

 New observable: the position-dependent power
spectrum and the integrated bispectrum

o Straightforward interpretation in terms of the
separate universe

Read my

» Easy to measure; easy to model! thesis!
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o Useful for fy 2@ and non-linear bias

» |ots of applications: e.g., QSO density correlated with
Lyman-alpha power spectrum

o All of the results and much more are summarised In
Chi-Ting Chiang’s PhD thesis: arXiv:1508.03256



r-space b1 bs
baseline | 1.971 £0.076 0.58 = 0.31
eff kernel 1.973 +=0.076 0.62 +=0.31
tidal bias | 1.971 £0.076 0.64 = 0.31
both 1.973 +=0.076 0.68 =0.31

Z-Space b1 bs
baseline 1.931 =0.077 0.94 = 0.35
eff kernel | 1.933 £ 0.077 0.65 = 0.35
tidal bias | 1.932 == 0.077 0.60 £ 0.35
both 1.933 =0.077 0.71 =0.35




