
Position-dependent 
Power Spectrum

Eiichiro Komatsu (Max Planck Institute for Astrophysics) 

Fundamental Cosmology Meeting 
Teruel, September 12, 2017

~Attacking an old, but unsolved, problem with a new method~



Motivation

• To gain a better insight into “mode coupling” 

• An interaction between short-wavelength 
modes and long-wavelength modes 

• Specifically, how do short wavelength modes 
respond to a long wavelength mode?
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w/o mode coupling
w. mode coupling
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Two Approaches
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• Global
• “Bird’s view”: see both long- and short-

wavelength modes, and compute coupling 
between the two directly 

• Local
• “Ant’s view”: Absorb a long-wavelength mode 

into a new background solution that a local 
observer sees, and compute short wavelength 
modes in the new background.



This presentation is based on
• Chiang et al. “Position-dependent power spectrum of 

the large-scale structure: a novel method to measure 
the squeezed-limit bispectrum”, JCAP 05, 048 (2014) 

• Chiang et al. “Position-dependent correlation function 
from the SDSS-III BOSS DR10 CMASS Sample”, JCAP 
09, 028 (2015)

• Wagner et al. “Separate universe simulations”, 
MNRAS, 448, L11 (2015) 

• Wagner et al. “The angle-averaged squeezed limit of 
nonlinear matter N-point functions”, JCAP 08, 042 
(2015)
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Preparation I:  
Comoving Coordinates

• Space expands. Thus, a physical length scale 
increases over time 

• Since the Universe is homogeneous and isotropic 
on large scales, the stretching of space is given by 
a time-dependent function, a(t), which is called the 
“scale factor” 

• Then, the physical length, r(t), can be written as 

• r(t) = a(t) x 

• x is independent of time, and called the 
“comoving coordinates”



Preparation II:  
Comoving Waveumbers

• Then, the physical length, r(t), can be written as 

• r(t) = a(t) x 

• x is independent of time, and called the 
“comoving coordinates” 

• When we do the Fourier analysis, the wavenumber, 
k, is defined with respect to x. This “comoving 
wavenumber” is related to the physical wavenumber 
by kphysical(t) = kcomoving/a(t)
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Preparation III:  
Power Spectrum

• Take these density fluctuations, and compute 
the density contrast:

• δ(x) = [ ρ(x)–ρmean ] / ρmean

• Fourier-transform this, square the amplitudes, 
and take averages. The power spectrum is thus:

• P(k) = <|δk|2>



BOSS Collaboration, 
arXiv:1203.6594

z=0.57



A simple question within the 
context of cosmology

• How do the cosmic structures evolve in an over-
dense region?
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Simple Statistics

• Divide the survey volume into many sub-volumes VL, 
and compare locally-measured power spectra with 
the corresponding local over-densities
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Simple Statistics

• Divide the survey volume into many sub-volumes VL, 
and compare locally-measured power spectra with 
the corresponding local over-densities

VL
�̄(rL)

P̂ (k, rL)



Position-dependent P(k)

• A clear correlation between 
the local over-densities and 
the local power spectra
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Integrated Bispectrum, iB(k)
• Correlating the local over-densities and power 

spectra, we obtain the “integrated bispectrum”:

• This is a (particular configuration of) three-point 
function. The three-point function in Fourier space 
is called the “bispectrum”, and is defined as
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Shapes of the Bispectrum
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Shapes of the Bispectrum

This Talk
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Integrated Bispectrum, iB(k)
• Correlating the local over-densities and power 

spectra, we obtain the “integrated bispectrum”:

• The expectation value of this quantity is an integral 
of the bispectrum that picks up the contributions 
mostly from the squeezed limit:

k

k
q3~q1

“taking the squeezed limit and  
then angular averaging”



Power Spectrum Response
• The integrated bispectrum measures how the local 

power spectrum responds to its environment, i.e., a 
long-wavelength density fluctuation

zero bispectrum
positive squeezed-limit 

bispectrum
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Response Function
• So, let us Taylor-expand the local power spectrum 

in terms of the long-wavelength density fluctuation:

• The integrated bispectrum is then give as

response function



Response Function:  
N-body Results

• Almost a constant, but a weak scale dependence, and 
clear oscillating features. How do we understand this?
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1. Global, “Bird’s View”
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Non-linearity generates a 
bispectrum

• If the initial conditions were Gaussian, linear 
perturbations remain Gaussian

• However, non-linear gravitational evolution makes density 
fluctuations at late times non-Gaussian, generating a non-
vanishing bispectrum

H=a’/a
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Fourier Transform…

•                           is the velocity gradient

– 8 –

our using θ ≡ ∇ · v, the velocity divergence field. Using equation (5) and the Friedmann

equation, we write the continuity equation [Eq. (3)] and the Euler equation [Eq. (4)] in

Fourier space as

δ̇(k, τ ) + θ(k, τ )

= −

∫

d3k1

(2π)3

∫

d3k2δD(k1 + k2 − k)
k · k1

k2
1

δ(k2, τ )θ(k1, τ ), (6)

θ̇(k, τ ) +
ȧ

a
θ(k, τ ) +

3ȧ2

2a2
Ωm(τ )δ(k, τ )

= −

∫

d3k1

(2π)3

∫

d3k2δD(k1 + k2 − k)
k2(k1 · k2)

2k2
1k

2
2

θ(k1, τ )θ(k2, τ ),

(7)

respectively.

To proceed further, we assume that the universe is matter dominated, Ωm(τ ) = 1

and a(τ ) ∝ τ 2. Of course, this assumption cannot be fully justified, as dark energy

dominates the universe at low z. Nevertheless, it has been shown that the next-to-leading

order correction to P (k) is extremely insensitive to the underlying cosmology, if one

uses the correct growth factor for δ(k, τ ) (Bernardeau et al. 2002). Moreover, as we are

primarily interested in z ≥ 1, where the universe is still matter dominated, accuracy of our

approximation is even better. (We quantify the error due to this approximation below.) To

solve these coupled equations, we shall expand δ(k, τ ) and θ(k, τ ) perturbatively using the

n-th power of linear solution, δ1(k), as a basis:

δ(k, τ ) =
∞

∑

n=1

an(τ )

∫

d3q1

(2π)3
· · ·

d3qn−1

(2π)3

×

∫

d3qnδD(
n

∑

i=1

qi − k)

×Fn(q1, q2, · · · , qn)δ1(q1) · · · δ1(qn), (8)

θ(k, τ ) = −
∞

∑

n=1

ȧ(τ )an−1(τ )

∫

d3q1

(2π)3
· · ·

d3qn−1

(2π)3

×

∫

d3qnδD(
n

∑

i=1

qi − k)

×Gn(q1, q2, · · · , qn)δ1(q1) · · · δ1(qn). (9)



Taylor-expand in powers of 
linear density fields δ1…
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Here, the functions F and G follows the following recursion relations with the trivial initial

conditions, F1 = G1 = 1. (Jain & Bertschinger 1994)Solutions!

• Fn and Gn with n≥3 can be found recursively. 



Illustrative Example: SPT
• Second-order perturbation gives the lowest-order 

bispectrum as

“l” stands for “linear”

• Then

Standard Perturbation Theory
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Illustrative Example: SPT

“l” stands for “linear”

• Then

• Second-order perturbation gives the lowest-order 
bispectrum as
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Illustrative Example: SPT

“l” stands for “linear”

• Then Response, dlnP(k)/dδ

• Second-order perturbation gives the lowest-order 
bispectrum as



Illustrative Example: SPT

“l” stands for “linear”

• Then Oscillation in P(k) is enhanced

• Second-order perturbation gives the lowest-order 
bispectrum as



Lowest-order prediction

Less non-linear

More non-linear
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1. Local, “Ant’s View”
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Separate Universe 
Approach

• The meaning of the position-dependent power 
spectrum becomes more transparent within the context 
of the “separate universe approach” 

• Each sub-volume with un over-density (or under-
density) behaves as if it were a separate universe 
with different cosmological parameters 

• In particular, if the global metric is a flat universe, then 
each sub-volume can be regarded as a different 
universe with non-zero curvature

Lemaitre (1933); Peebles (1980)
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Mapping between two 
cosmologies

• The goal here is to compute the power spectrum in 
the presence of a long-wavelength perturbation δ. 
We write this as P(k,a|δ) 

• We try to achieve this by computing the power 
spectrum in a modified cosmology with non-zero 
curvature. Let us put the tildes for quantities 
evaluated in a modified cosmology

P̃ (k̃, ã) ! P (k, a|�̄)
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Separate Universe 
Approach: The Rules

• We evaluate the power spectrum in both 
cosmologies at the same physical time and same 
physical spatial coordinates 

• Thus, the evolution of the scale factor is different:

*tilde: separate universe cosmology
35



Separate Universe 
Approach: The Rules

• We evaluate the power spectrum in both 
cosmologies at the same physical time and same 
physical spatial coordinates 

• Thus, comoving coordinates are different too: 

*tilde: separate universe cosmology
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Effect 1: Dilation
• Change in the comoving coordinates gives 

dln(k3P)/dlnk
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Effect 2: Reference Density
• Change in the denominator of the definition of δ:

• Putting both together, we find a generic formula, 
valid to linear order in the long-wavelength δ:
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Example: Linear P(k)
• Let’s use the formula to compute the response of 

the linear power spectrum, Pl(k), to the long-
wavelength δ. Since Pl ~ D2 [D: linear growth],

• Spherical collapse model gives 
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Response of Pl(k)
• Then we obtain:

• Remember the response computed from the 
leading-order SPT bispectrum:

• So, the leading-oder SPT bispectrum gives the 
response of the linear P(k). Neat!!



Response of P3rd-order(k)
• So, let’s do the same using third-order perturbation 

theory!

• Then we obtain:



3rd-order does a decent job

3rd-order

Less non-linear

More non-linear



This is a powerful formula

• The separate universe description is powerful, as it 
provides physically intuitive, transparent, and 
straightforward way to compute the effect of a long-
wavelength perturbation on the small-scale 
structure growth 

• The small-scale structure can be arbitrarily non-
linear!
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Do the data show this?



SDSS-III/BOSS DR11

• OK, now, let’s look at the real data (BOSS DR10) to 
see if we can detect the expected influence of 
environments on the small-scale structure growth 

• Bottom line: we have detected the integrated 
bispectrum at 7.4σ. Not bad for the first detection!
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L=220 Mpc/h
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L=120 Mpc/h
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Results: χ2/DOF = 46.4/38

• Because of complex geometry of DR10 footprint, 
we use the local correlation function, instead of 
the power spectrum 

• Integrated three-point function, iζ(r), is just Fourier 
transform of iB(k):

L=120 Mpc/hL=220 Mpc/h



Results: χ2/DOF = 46.4/38
L=120 Mpc/hL=220 Mpc/h

• Because of complex geometry of DR10 footprint, 
we use the local correlation function, instead of 
the power spectrum 

• Integrated three-point function, iζ(r), is just Fourier 
transform of iB(k):

7.4σ measurement of 
the squeezed-limit 

bispectrum!!



Nice, but what is this good for?
• Primordial non-Gaussianity from the early 

Universe

• The constraint from BOSS is work in progress, 
but we find that the integrated bispectrum is a 
nearly optimal estimator for the squeezed-
limit bispectrum from inflation 

• We no longer need to measure the full 
bispectrum, if we are just interested in the 
squeezed limit
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• We can also learn about galaxy bias

• Local bias model: 

• δg(x)=b1δm(x)+(b2/2)[δm(x)]2+… 

• The bispectrum can give us b2 at the leading 
order, unlike for the power spectrum that has b2 at 
the next-to-leading order

Nice, but what is this good for?
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Result on b2

• We use the leading-order SPT bispectrum with the 
local bias model to interpret our measurements 

• [We also use information from BOSS’s 2-point 
correlation function on fσ8 and BOSS’s weak 
lensing data on σ8] 

• We find: b2 = 0.41 ± 0.41
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Simulating Ant’s Views



• How can we compute \tilde{P}(k,a) in practice? 

• Small N-body simulations with a modified 
cosmology (“Separate Universe Simulation”)

• Perturbation theory

This is a powerful formula
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Separate Universe Simulation
• How do we compute the response function beyond 

perturbation theory?  

• Do we have to run many big-volume simulations and 
divide them into sub-volumes? No. 

• Fully non-linear computation of the response function is 
possible with separate universe simulations

• E.g., we run two small-volume simulations with separate-
universe cosmologies of over- and under-dense regions 
with the same initial random number seeds, and 
compute the derivative dlnP/dδ by, e.g.,

d lnP (k)

d�̄
=

lnP (k|+ �̄)� lnP (k|� �̄)

2�̄55



Separate Universe Cosmology
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R1=dlnP/dδ

• The symbols are the data points with error bars. You 
cannot see the error bars!
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R2=d2lnP/dδ2

• More derivatives can be computed by using 
simulations run with more values of δ
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R3=d3lnP/dδ3

• But, what do dnlnP/dδn mean physically??
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More derivatives: Squeezed 
limits of N-point functions

• Why do we want to know this? I don’t know, but it is 
cool and they have not been measured before!

R1: 3-point function
R2: 4-point function
R3: 5-point function
RN: N–2-point function
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Summary
• New observable: the position-dependent power 

spectrum and the integrated bispectrum 

• Straightforward interpretation in terms of the 
separate universe 

• Easy to measure; easy to model! 

• Useful for primordial non-Gaussianity and non-linear 
bias 

• Lots of applications: e.g., QSO density correlated with 
Lyman-alpha power spectrum 

• All of the results and much more are summarised in 
Chi-Ting Chiang’s PhD thesis: arXiv:1508.03256

Read my 
thesis!
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One more cool thing
• We can use the separate universe simulations to 

test validity of SPT to all orders in perturbations

• The fundamental prediction of SPT: the non-linear 
power spectrum at a given time is given by the 
linear power spectra at the same time 

• In other words, the only time dependence arises 
from the linear growth factors, D(t)
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One more cool thing
• We can use the separate universe simulations to 

test validity of SPT to all orders in perturbations

SPT at all orders: Exact solution of 
the pressureless fluid equations

We can test validity of SPT as a description of collisions particles



Example: P3rd-order(k)
• SPT to 3rd order

• The only time-dependence is in Pl(k,a) ~ D2(a) 

• Is this correct?
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Rescaled simulations vs 
Separate universe simulations
• To test this, we run two sets of simulations. 

• First: we rescale the initial amplitude of the power 
spectrum, so that we have a given value of the linear 
power spectrum amplitude at some later time, tout 

• Second: full separate universe simulation, which 
changes all the cosmological parameters consistently, 
given a value of δ 

• We choose δ so that it yields the same amplitude of 
the linear power spectrum as the first one at tout

66



Results: 3-point function

• To isolate the effect of the growth rate, we have 
removed the dilation and reference-density effects 
from the response functions



Results: 4-point function

• To isolate the effect of the growth rate, we have 
removed the dilation and reference-density effects 
from the response functions



Results: 5-point function

• To isolate the effect of the growth rate, we have 
removed the dilation and reference-density effects 
from the response functions



Break down of SPT at all orders
• At z=0, SPT computed to all orders breaks down at 

k~0.5 Mpc/h with 10% error, in the squeezed limit 3-
point function 

• Break down occurs at lower k for the squeezed limits 
of the 4- and 5-point functions 

• Break down occurs at higher k at z=2 

• I find this information quite useful: it quantifies accuracy 
of the perfect-fluid approximation of density fields
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More on b2

• Using slightly more advanced models, we find:

*The last value is in agreement with b2 found by the 
Barcelona group (Gil-Marín et al. 2014) that used the 
full bispectrum analysis and the same model

*




