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Motivation

• To gain a better insight into “mode coupling” 

• An interaction between short-wavelength 
modes and long-wavelength modes 

• Specifically, how do short wavelength modes 
respond to a long wavelength mode?
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w/o mode coupling
w. mode coupling
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Understanding 
Cosmological Observations
• My talk would fit the scope of this workshop 

because: 

• The goal is to understand the three-point 
correlation function - a beast that many people 
are scared of… 

• So, we wanted to create something that is nicer 
and easier to deal with than the three-point 
function, yet to retain some of its power for 
cosmology. Hope you will like it!
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Two Approaches
• Global

• “Bird’s view”: see both long- and short-wavelength 
modes, and compute coupling between the two 
directly 

• Local

• “Ant’s view”: Absorb a long-wavelength mode into a 
new background solution that a local observer sees, 
and compute short wavelength modes in the new 
background.
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This presentation is based on
• Chiang et al. “Position-dependent power spectrum of 

the large-scale structure: a novel method to measure 
the squeezed-limit bispectrum”, JCAP 05, 048 (2014) 

• Chiang et al. “Position-dependent correlation function 
from the SDSS-III BOSS DR10 CMASS Sample”, JCAP 
09, 028 (2015)

• Wagner et al. “Separate universe simulations”, 
MNRAS, 448, L11 (2015) 

• Wagner et al. “The angle-averaged squeezed limit of 
nonlinear matter N-point functions”, JCAP 08, 042 
(2015)
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Preparation I:  
Comoving Coordinates

• Space expands. Thus, a physical length scale 
increases over time 

• Since the Universe is homogeneous and isotropic 
on large scales, the stretching of space is given by 
a time-dependent function, a(t), which is called the 
“scale factor” 

• Then, the physical length, r(t), can be written as 

• r(t) = a(t) x 

• x is independent of time, and called the 
“comoving coordinates”



Preparation II:  
Comoving Waveumbers

• Then, the physical length, r(t), can be written as 

• r(t) = a(t) x 

• x is independent of time, and called the 
“comoving coordinates” 

• When we do the Fourier analysis, the wavenumber, 
k, is defined with respect to x. This “comoving 
wavenumber” is related to the physical wavenumber 
by kphysical(t) = kcomoving/a(t)
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Preparation III:  
Power Spectrum

• Take these density fluctuations, and compute 
the density contrast:

• δ(x) = [ ρ(x)–ρmean ] / ρmean

• Fourier-transform this, square the amplitudes, 
and take averages. The power spectrum is thus:

• P(k) = <|δk|2>



BOSS Collaboration, 
arXiv:1203.6594

z=0.57



A simple question within the 
context of cosmology

• How do the cosmic structures evolve in an over-
dense region?
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Simple Statistics

• Divide the survey volume into many sub-volumes VL, 
and compare locally-measured power spectra with 
the corresponding local over-densities
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Simple Statistics

• Divide the survey volume into many sub-volumes VL, 
and compare locally-measured power spectra with 
the corresponding local over-densities

VL
�̄(rL)

P̂ (k, rL)



Position-dependent P(k)

• A clear correlation between 
the local over-densities and 
the local power spectra
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Integrated Bispectrum, iB(k)
• Correlating the local over-densities and power 

spectra, we obtain the “integrated bispectrum”:

• This is a (particular configuration of) three-point 
function. The three-point function in Fourier space 
is called the “bispectrum”, and is defined as
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Shapes of the Bispectrum
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Shapes of the Bispectrum

This Talk
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Integrated Bispectrum, iB(k)
• Correlating the local over-densities and power 

spectra, we obtain the “integrated bispectrum”:

• The expectation value of this quantity is an integral 
of the bispectrum that picks up the contributions 
mostly from the squeezed limit:

k

k
q3~q1

“taking the squeezed limit and  
then angular averaging”



Power Spectrum Response
• The integrated bispectrum measures how the local 

power spectrum responds to its environment, i.e., a 
long-wavelength density fluctuation

zero bispectrum
positive squeezed-limit 

bispectrum
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Response Function
• So, let us Taylor-expand the local power spectrum 

in terms of the long-wavelength density fluctuation:

• The integrated bispectrum is then give as

response function



Response Function:  
N-body Results

• Almost a constant, but a weak scale dependence, and 
clear oscillating features. How do we understand this?
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Non-linearity generates a 
bispectrum

• If the initial conditions were Gaussian, linear 
perturbations remain Gaussian

• However, non-linear gravitational evolution makes density 
fluctuations at late times non-Gaussian, generating a non-
vanishing bispectrum

H=a’/a
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1. Global, “Bird’s View”
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Illustrative Example: SPT
• Second-order perturbation gives the lowest-order 

bispectrum as

“l” stands for “linear”

• Then

Standard Perturbation Theory
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Illustrative Example: SPT

“l” stands for “linear”

• Then

• Second-order perturbation gives the lowest-order 
bispectrum as
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Illustrative Example: SPT

“l” stands for “linear”

• Then Response, dlnP(k)/dδ

• Second-order perturbation gives the lowest-order 
bispectrum as



Illustrative Example: SPT

“l” stands for “linear”

• Then Oscillation in P(k) is enhanced

• Second-order perturbation gives the lowest-order 
bispectrum as



Lowest-order prediction

Less non-linear

More non-linear
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1. Local, “Ant’s View”
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Separate Universe 
Approach

• The meaning of the position-dependent power 
spectrum becomes more transparent within the context 
of the “separate universe approach” 

• Each sub-volume with un over-density (or under-
density) behaves as if it were a separate universe 
with different cosmological parameters 

• In particular, if the global metric is a flat universe, then 
each sub-volume can be regarded as a different 
universe with non-zero curvature

Lemaitre (1933); Peebles (1980)
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Mapping between two 
cosmologies

• The goal here is to compute the power spectrum in 
the presence of a long-wavelength perturbation δ. 
We write this as P(k,a|δ) 

• We try to achieve this by computing the power 
spectrum in a modified cosmology with non-zero 
curvature. Let us put the tildes for quantities 
evaluated in a modified cosmology

P̃ (k̃, ã) ! P (k, a|�̄)
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Separate Universe 
Approach: The Rules

• We evaluate the power spectrum in both 
cosmologies at the same physical time and same 
physical spatial coordinates 

• Thus, the evolution of the scale factor is different:

*tilde: separate universe cosmology
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Separate Universe 
Approach: The Rules

• We evaluate the power spectrum in both 
cosmologies at the same physical time and same 
physical spatial coordinates 

• Thus, comoving coordinates are different too: 

*tilde: separate universe cosmology
35



Effect 1: Dilation
• Change in the comoving coordinates gives 

dln(k3P)/dlnk
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Effect 2: Reference Density
• Change in the denominator of the definition of δ:

• Putting both together, we find a generic formula, 
valid to linear order in the long-wavelength δ:
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Example: Linear P(k)
• Let’s use the formula to compute the response of 

the linear power spectrum, Pl(k), to the long-
wavelength δ. Since Pl ~ D2 [D: linear growth],

• Spherical collapse model gives 
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Response of Pl(k)
• Then we obtain:

• Remember the response computed from the 
leading-order SPT bispectrum:

• So, the leading-oder SPT bispectrum gives the 
response of the linear P(k). Neat!!



Response of P3rd-order(k)
• So, let’s do the same using third-order perturbation 

theory!

• Then we obtain:



3rd-order does a decent job

3rd-order

Less non-linear

More non-linear



This is a powerful formula

• The separate universe description is powerful, as it 
provides physically intuitive, transparent, and 
straightforward way to compute the effect of a long-
wavelength perturbation on the small-scale 
structure growth 

• The small-scale structure can be arbitrarily non-
linear!
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Do the data show this?



SDSS-III/BOSS DR11

• OK, now, let’s look at the real data (BOSS DR10) to 
see if we can detect the expected influence of 
environments on the small-scale structure growth 

• Bottom line: we have detected the integrated 
bispectrum at 7.4σ. Not bad for the first detection!
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L=220 Mpc/h
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L=120 Mpc/h
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Results: χ2/DOF = 46.4/38

• Because of complex geometry of DR10 footprint, 
we use the local correlation function, instead of 
the power spectrum 

• Integrated three-point function, iζ(r), is just Fourier 
transform of iB(k):

L=120 Mpc/hL=220 Mpc/h



Results: χ2/DOF = 46.4/38
L=120 Mpc/hL=220 Mpc/h

• Because of complex geometry of DR10 footprint, 
we use the local correlation function, instead of 
the power spectrum 

• Integrated three-point function, iζ(r), is just Fourier 
transform of iB(k):

7.4σ measurement of 
the squeezed-limit 

bispectrum!!



Nice, but what is this good for?
• Primordial non-Gaussianity from the early 

Universe

• The constraint from BOSS is work in progress, 
but we find that the integrated bispectrum is a 
nearly optimal estimator for the squeezed-
limit bispectrum from inflation 

• We no longer need to measure the full 
bispectrum, if we are just interested in the 
squeezed limit
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• We can also learn about galaxy bias

• Local bias model: 

• δg(x)=b1δm(x)+(b2/2)[δm(x)]2+… 

• The bispectrum can give us b2 at the leading 
order, unlike for the power spectrum that has b2 at 
the next-to-leading order

Nice, but what is this good for?
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Result on b2

• We use the leading-order SPT bispectrum with the 
local bias model to interpret our measurements 

• [We also use information from BOSS’s 2-point 
correlation function on fσ8 and BOSS’s weak 
lensing data on σ8] 

• We find: b2 = 0.41 ± 0.41
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Simulating Ant’s Views



• How can we compute \tilde{P}(k,a) in practice? 

• Small N-body simulations with a modified 
cosmology (“Separate Universe Simulation”)

• Perturbation theory

This is a powerful formula
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Separate Universe Simulation
• How do we compute the response function beyond 

perturbation theory?  

• Do we have to run many big-volume simulations and 
divide them into sub-volumes? No. 

• Fully non-linear computation of the response function is 
possible with separate universe simulations

• E.g., we run two small-volume simulations with separate-
universe cosmologies of over- and under-dense regions 
with the same initial random number seeds, and 
compute the derivative dlnP/dδ by, e.g.,

d lnP (k)

d�̄
=

lnP (k|+ �̄)� lnP (k|� �̄)

2�̄54



Separate Universe Cosmology
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R1=dlnP/dδ

• The symbols are the data points with error bars. You 
cannot see the error bars!
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R2=d2lnP/dδ2

• More derivatives can be computed by using 
simulations run with more values of δ
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R3=d3lnP/dδ3

• But, what do dnlnP/dδn mean physically??
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More derivatives: Squeezed 
limits of N-point functions

• Why do we want to know this? I don’t know, but it is 
cool and they have not been measured before!

R1: 3-point function
R2: 4-point function
R3: 5-point function
RN: N–2-point function
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Summary
• New observable: the position-dependent power 

spectrum and the integrated bispectrum 

• Straightforward interpretation in terms of the 
separate universe 

• Easy to measure; easy to model! 

• Useful for primordial non-Gaussianity and non-linear 
bias 

• Lots of applications: e.g., QSO density correlated with 
Lyman-alpha power spectrum 

• All of the results and much more are summarised in 
Chi-Ting Chiang’s PhD thesis: arXiv:1508.03256

Read my 
thesis!
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More on b2

• Using slightly more advanced models, we find:

*The last value is in agreement with b2 found by the 
Barcelona group (Gil-Marín et al. 2014) that used the 
full bispectrum analysis and the same model

*





One more cool thing
• We can use the separate universe simulations to 

test validity of SPT to all orders in perturbations

• The fundamental prediction of SPT: the non-linear 
power spectrum at a given time is given by the 
linear power spectra at the same time 

• In other words, the only time dependence arises 
from the linear growth factors, D(t)
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One more cool thing
• We can use the separate universe simulations to 

test validity of SPT to all orders in perturbations

SPT at all orders: Exact solution of 
the pressureless fluid equations

We can test validity of SPT as a description of collisions particles



Example: P3rd-order(k)
• SPT to 3rd order

• The only time-dependence is in Pl(k,a) ~ D2(a) 

• Is this correct?
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Rescaled simulations vs 
Separate universe simulations
• To test this, we run two sets of simulations. 

• First: we rescale the initial amplitude of the power 
spectrum, so that we have a given value of the linear 
power spectrum amplitude at some later time, tout 

• Second: full separate universe simulation, which 
changes all the cosmological parameters consistently, 
given a value of δ 

• We choose δ so that it yields the same amplitude of 
the linear power spectrum as the first one at tout
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Results: 3-point function

• To isolate the effect of the growth rate, we have 
removed the dilation and reference-density effects 
from the response functions



Results: 4-point function

• To isolate the effect of the growth rate, we have 
removed the dilation and reference-density effects 
from the response functions



Results: 5-point function

• To isolate the effect of the growth rate, we have 
removed the dilation and reference-density effects 
from the response functions



Break down of SPT at all orders
• At z=0, SPT computed to all orders breaks down at 

k~0.5 Mpc/h with 10% error, in the squeezed limit 3-
point function 

• Break down occurs at lower k for the squeezed limits 
of the 4- and 5-point functions 

• Break down occurs at higher k at z=2 

• I find this information quite useful: it quantifies accuracy 
of the perfect-fluid approximation of density fields
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