

Parity Violation in Cosmology In search of new physics for the Universe The lecture slides are available at https://wwwmpa.mpa-garching.mpg.de/~komatsu/ lectures--reviews.html Value 1

Eiichiro Komatsu (Max Planck Institute for Astrophysics) Nagoya University, June 6–30, 2023

nam	

Topics From the syllabus

- 1. What is parity symmetry?
- 2. Chern-Simons interaction
- 3. Parity violation 1: Cosmic inflation
- 4. Parity violation 2: Dark matter
- 5. Parity violation 3: Dark energy
- 6. Light propagation: birefringence
- 7. Physics of polarization of the cosmic microwave background
- 8. Recent observational results, their implications, and future prospects

7.1 Generation of Polarization in the CMB

Credit: WMAP Science Team

The sky in various wavelengths Visible -> Near Infrared -> Far Infrared -> Submillimeter -> Microwave

Where did the CMB we see today come from?

Credit: WMAP Science Team The surface of "last scattering" by electrons (Scattering generates polarization!)

Not shown: The cosmological redshift due to the expansion of the Universe

1131 S07C04_DM

Horizontally polarized

LLL

Physics of CMB Polarization Necessary and sufficient condition: Scattering and Quadrupole Anisotropy

Credit : Wayne Hu

Credit: ESA

< · · · · ~ -----11 - - / / - / / / 11/1/ /11.11.11/11 11-11/11 / -- / / . . . / ---- / /~/////// 1/1 ------- · · /////// 1-////---///-/// 1 - - 1 ______ 11/1/////---1-/-11 . - - | \ 1111 /////---1...///--~ 1 \ ------1-1---/////

Temperature (smoothed) + Polarisation

////

1.1.1

1--1-

1-11-

--/1

~ ` `

1////://

1-111

- ----/////

Credit: ESA

Spherical Harmonics Decomposition $\Delta T(\hat{n}) = \sum a_{\ell m} Y_{\ell}^{m}(\hat{n})$

0.2 0.1 0.07 Angular size

Parity transformation of temperature anisotropy

- The line-of-sight unit vector is \hat{n} .
 - Parity transformation is $\hat{n} \rightarrow \hat{n}' = -\hat{n}$.
- The spherical harmonics transform as $Y_{\ell}^m(-\hat{n}) = (-1)^{\ell} Y_{\ell}^m(\hat{n})$. Thus,

 $\Delta T(\hat{n}) = \sum a_{\ell m} Y_{\ell}^{m}(\hat{n})$

Full-sky Stokes Parameters In the CMB convention Y

- The line-of-sight unit vector is \hat{n} .
- In the CMB convention, Q, U, and the position angle (PA) are defined in the right-handed coordinate system with the z-axis in the line of sight, rather than in the direction of the photons.
- This is equivalent to the left-handed coordinate system with the *z*-axis in the direction of the photons (Day 5).

7.2 E- and B-mode Polarization

Spin-2 Spherical Harmonics

- If we write $Q \pm iU = Pe^{\pm 2i\beta}$ (Day 5) and rotate the coordinates by φ in the

$$\beta \to \beta' = \beta - \varphi$$

- Thus, $Q' \pm iU' = e^{\mp 2i\varphi}(Q \pm iU)$
- This means that we cannot expand $Q \pm iU$ using the usual spherical, harmonics, as Y_{ℓ}^m does not transform as a spin-2 field under rotation.

 To probe parity symmetry in the CMB polarization, Stokes parameters Q and U are not convenient because they depend on the choice of coordinates.

right-handed coordinate system with the z-axis in the line of sight, we find

Newman, Penrose (1966); Weinberg "Cosmology", Sec. 7.4 **Spin-2 Spherical Harmonics**

- Spin-2 spherical harmonics, $_{\pm 2}Y_{\ell}^{m}(\hat{n})$, are constructed as follows.
 - 1. Take two derivatives of Y_{ℓ}^m with respect to the directions perpendicular to the line of sight, $\tilde{\nabla}_i \tilde{\nabla}_j Y_{\ell}^m(\hat{n})$, where
 - $\tilde{\nabla} = \hat{\theta} \frac{\partial}{\partial \theta} + \frac{\phi}{\sin \theta} \frac{\partial}{\partial \phi} \quad \text{with orthogonal unit vectors given by} \\ \hat{\theta} = (\cos \phi \cos \theta, \sin \phi \cos \theta)$

Under parity transformation, $\hat{n} \rightarrow \hat{n}' = -\hat{n}$ $(\theta \rightarrow \pi - \theta, \phi \rightarrow \phi + \pi)$:

$$\begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\phi}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\phi}, \\ \widehat{\theta} & - \hat{\phi}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\phi}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\phi}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \widehat{\theta} & - \hat{\theta}, \\ \end{array} \begin{array}{ll} \widehat{\theta} & - \hat{\theta}, \\ \end{array} \end{array}$$

Newman, Penrose (1966); Weinberg "Cosmology", Sec. 7.4 **Spin-2 Spherical Harmonics**

• Spin-2 spherical harmonics, $_{\pm 2}Y_{\ell}^{m}(\hat{n})$, are constructed as follows. $\mathbf{e}_{+} = (\hat{\theta} \pm i\hat{\phi})/\sqrt{2}$, so that $_{+2}Y_{\ell}^{m}(\hat{n}) \propto \sum e_{+i}e_{+j}\tilde{\nabla}_{i}\tilde{\nabla}_{j}Y_{\ell}^{m}(\hat{n})$ ii ${}_{-2}Y_{\ell}^{m}(\hat{n}) \propto \sum e_{-i}e_{-j}\tilde{\nabla}_{i}\tilde{\nabla}_{j}Y_{\ell}^{m}(\hat{n})$ ij

2. Take the dot product of $\tilde{\nabla}_i \tilde{\nabla}_i Y_{\ell}^m(\hat{n})$ and two polarization vectors given by

These spherical harmonics transform as spin-2 fields.

to the spin-1 spherical harmonics, $\pm Y_{\ell}^{m}(\hat{n})$.

Newman, Penrose (1966); Weinberg "Cosmology", Sec. 7.4 **Spin-2 Spherical Harmonics**

- Spin-2 spherical harmonics, $_{\pm 2}Y_{\ell}^{m}(\hat{n})$, are constructed as follows.
 - given by

4. The results: ${}_{\pm 2}Y^m_\ell(\hat{n}) = 2_4$

3. Determine the proportionality constant from the orthonormality condition

$$Y_{\ell}^{m}(\hat{n})_{s}Y_{\ell'}^{m'*}(\hat{n}) = \delta_{\ell\ell'}\delta_{mm'}$$

$$\sqrt{\frac{(\ell-2)!}{(\ell+2)!}} \sum_{ij} e_{\pm i} e_{\pm j} \tilde{\nabla}_i \tilde{\nabla}_j Y_\ell^m$$

Problem Set 6 Parity transformation of $_{\pm 2}Y_{\ell}^{m}(\hat{n})$

transformation, $\hat{n} \rightarrow \hat{n}' = -\hat{n}$.

Show that the spin-2 spherical harmonics transform as

$${}_{+2}Y_{\ell}^{m}(\hat{n}') = (-1)^{\ell}{}_{-2}Y_{\ell}^{m}(\hat{n}') = (-1)^{\ell}{}_{+2}Y_{\ell}^{m}(\hat{n}') = (-1)^{\ell}{}_{$$

• Show that the polarization vectors transform as $\mathbf{e}_{\pm}(\hat{n}') = \mathbf{e}_{\pm}(\hat{n})$ under parity

 $\mathcal{I}^m(\hat{n})$ $rm(\hat{n})$ $\ell(n)$

Parity transformation of Q and U The sign of *U* changes.

• Under parity transformation, $\hat{n} \rightarrow \hat{n}' = -\hat{n}$, Stokes parameters Q and U

Hu, White (1997)

transform as $Q(\hat{n}') = Q(\hat{n}), U(\hat{n}') = -U(\hat{n})$. The sign of U changes.

Zaldarriaga, Seljak (1997); Kamionkowski, Kosowsky, Stebbins (1997) **Eigenstates of parity: E and B modes** Expansion of Q±iU using the spin-2 spherical harmonics

- We expand Stokes parameters using the spin-2 spherical harmonics as
- $Q(\hat{n}) \pm iU(\hat{n}) = -\sum (E_{\ell m} \pm iB_{\ell m})_{\pm 2} Y_{\ell}^{m}(\hat{n})$ ℓm

• Parity transformation, $\hat{n} \to \hat{n}' = -\hat{n}$, is <u>Hint:</u> $\pm 2Y_{\ell}^m(-\hat{n}) = (-1)^{\ell} + 2Y_{\ell}^m(\hat{n})^{\text{Problem}}$ Set 6

 $Q(\hat{n}') \pm iU(\hat{n}') = -\sum (E'_{\ell m} \pm iB'_{\ell m})(-1)^{\ell}_{\mp 2}Y_{\ell}^{m}(\hat{n})$

 $= Q(\hat{n}) \mp iU(\hat{n}) = -\sum (E_{\ell m} \mp iB_{\ell m})_{\mp 2} Y_{\ell}^{m}(\hat{n})$

Zaldarriaga, Seljak (1997); Kamionkowski, Kosowsky, Stebbins (1997) **Eigenstates of parity: E and B modes** Expansion of Q±iU using the spin-2 spherical harmonics

 ℓm

- We expand Stokes parameters using the spin-2 spherical harmonics as
 - $Q(\hat{n}) \pm iU(\hat{n}) = -\sum (E_{\ell m} \pm iB_{\ell m})_{\pm 2} Y_{\ell}^{m}(\hat{n})$

$$E_{\ell m}' = (-1)^{\ell} E_{\ell m}$$
$$B_{\ell m}' = (-1)^{\ell+1} B_{\ell m}$$

E and B modes have the opposite parity!

• Parity transformation, $\hat{n} \to \hat{n}' = -\hat{n}$, is <u>Hint:</u> $\pm 2Y_{\ell}^m(-\hat{n}) = (-1)^{\ell}_{\pm 2}Y_{\ell}^m(\hat{n})$

 $-\sum (E'_{\ell m} \pm i B'_{\ell m}) (-1)^{\ell}_{\mp 2} Y^{m}_{\ell}(\hat{n})$

 $(E_{\ell m} \mp i B_{\ell m})_{\mp 2} Y_{\ell}^{m}(\hat{n})$

Temperature and Polarization Power Spectra

the power spectra are given by

- parity, which are sensitive probes of violation of parity symmetry.
 - 4 even-parity and 2 odd-parity combinations.

• For $\Delta T(\hat{n}) = \sum T_{\ell m} Y_{\ell}^{m}(\hat{n})$ and $Q(\hat{n}) + iU(\hat{n}) = -\sum (E_{\ell m} + iB_{\ell m})_{\pm 2} Y_{\ell}^{m}(\hat{n})$,

• C_{ℓ}^{TT} , C_{ℓ}^{TE} , C_{ℓ}^{EE} , and C_{ℓ}^{BB} have even parity, whereas C_{ℓ}^{TB} and C_{ℓ}^{EB} have odd

CMB Power Spectra Progress over 30 years

- This is the typical figure seen in talks and lectures on the CMB.
 - The temperature and the E- and B-mode polarization power spectra are well measured.
- Parity violation appears in the TB and EB power spectra, not shown here.

Eskilt, EK (2022) **This is the EB power spectrum (WMAP+Planck)** Galactic plane removed (62% of the sky)

7.3 Cosmic Birefringence in the CMB

How does the EM wave of the CMB propagate?

The surface of "last scattering" by electrons

(Scattering generates *polarization*!)

Credit: WMAP Science Team

How does the EM wave of the CMB propagate?

$$I_{\rm CS} = \int d^4 x \sqrt{-g} \left(-\frac{\alpha}{4f} \chi F \widetilde{F} \right) \longrightarrow \beta =$$

 $=+rac{lpha}{2f}\left[\chi(au_{
m obs})-\chi(au_{
m em})
ight]$

Lue, Wang, Kamionkowski (1999); Feng et al. (2005); Liu, Lee, Ng (2006) EB from rotation of the plane of linear polarization

- Stokes parameters can be written as (Day 5) $Q \pm iU = Pe^{\pm 2iPA}$
- Cosmic birefringence shifts the position angle (PA) by PA \rightarrow PA + β . Thus, the observed E and B modes are related to those at the surface of last scattering as

$$E_{\ell m}^{\text{obs}} \pm iB_{\ell m}^{\text{obs}} = (E_{\ell m} \pm iB_{\ell m})e^{\pm 2i\beta}$$
$$E_{\ell m}^{\text{obs}} = E_{\ell m}\cos(2\beta) - B_{\ell m}\sin(2\beta)$$
$$B_{\ell m}^{\text{obs}} = E_{\ell m}\sin(2\beta) + B_{\ell m}\cos(2\beta)$$

Lue, Wang, Kamionkowski (1999); Feng et al. (2005); Liu, Lee, Ng (2006) Searching for cosmic birefringence^{Zhao et al. (2015)}

- The observed polarization power spectra are given by $C_{\ell}^{EE,\text{obs}} = C_{\ell}^{EE} \cos^2(2\beta) + C_{\ell}^{BB} \sin^2(2\beta) - C_{\ell}^{EB} \sin(4\beta)$ $C_{\ell}^{BB,\text{obs}} = C_{\ell}^{EE} \sin^2(2\beta) + C_{\ell}^{BB} \cos^2(2\beta) + C_{\ell}^{EB} \sin(4\beta)$ $C_{\ell}^{EE,\text{obs}} - C_{\ell}^{BB,\text{obs}} = (C_{\ell}^{EE} - C_{\ell}^{BB})\cos(4\beta) - 2C_{\ell}^{EB}\sin(4\beta)$
- We find $C_{\ell}^{EB,\text{obs}} = \frac{1}{2} \left(C_{\ell}^{EE} - C_{\ell}^{BB} \right) \text{si}$ $=\frac{\mathbf{I}}{2}(C_{\ell}^{EE,\text{obs}}-C_{\ell}^{BB}$

$$\frac{in(4\beta) + C_{\ell}^{EB} \cos(4\beta)}{S_{32}} \tan(4\beta) + \frac{C_{\ell}^{EB}}{\cos(4\beta)}$$

EB is given by the difference between EE and BB spectra.

Lue, Wang, Kamionkowski (1999); Feng et al. (2005); Liu, Lee, Ng (2006) Searching for cosmic birefringence^{Zhao et al. (2015)}

• Similarly,

$$C_{\ell}^{TB,\text{obs}} = C_{\ell}^{TE,\text{obs}} \tan \theta$$

• We find $C_{\ell}^{EB,\text{obs}} = \frac{1}{2} (C_{\ell}^{EE} - C_{\ell}^{BB}) \sin(4\beta) + C_{\ell}^{EB} \cos(4\beta)$

 $n(2\beta) + \frac{C_{\ell}^{TB}}{\cos(2\beta)}$

 $=\frac{1}{2}\left(C_{\ell}^{EE,\text{obs}}-C_{\ell}^{BB,\text{obs}}\right)\tan(4\beta)+\frac{C_{\ell}^{EB}}{\cos(4\beta)}$

EB is given by the *difference* between EE and BB spectra.

Cosmic Birefringence fits well(?) Nearly full-sky data (92% of the sky)

Eskilt, EK (2022)

Cosmic Birefringence fits well(?) Galactic plane removed (62% of the sky)

Eskilt, EK (2022)

7.4 CMB Polarization from GW

How to detect GW? Laser interferometer technique, used by LIGO and VIRGO

Detecting GW by CMB Quadrupole temperature anisotropy generated by red- and blue-shifting of photons

Isotropic radiation field (CMB)

Detecting GW by CMB Quadrupole temperature anisotropy generated by red- and blue-shifting of photons

Isotropic radiation field (CMB)

Sachs, Wolfe (1967)

Detecting GW by CMB *Polarization* Quadrupole temperature anisotropy scattered by an electron

Isotropic radiation field (CMB)

Polnarev (1985)

propagation direction of GW $\,k$

Recap: Day 6

- The CMB polarization is produced by Thomson scattering of a locally scattering.
- distribution around electrons.
- Using the spin-2 spherical harmonics, Stokes parameters Q±iU can be parity. GW can produce both E and B modes.
- The cross-correlation power spectra, TB and EB, are sensitive to parity-

There is a signal in the EB power spectrum with a statistical significance of 9σ . What is the source of this signal?

anisotropic temperature distribution around electrons at the surface of the last

• Both density fluctuations and GW generate a locally anisotropic temperature

decomposed into parity eigenstates called E and B modes with the opposite

violating physics such as cosmic birefringence and chiral gravitational waves.