CMB Polarisation: Toward an Observational Proof of Cosmic Inflation

Eiichiro Komatsu, Max-Planck-Institut für Astrophysik Colloquium, Max-Planck-Institut für Radioastronomie October 16, 2015

March 17, 2014

BICEP2's announcement

First Direct Evidence of Cosmic Inflation

Release No.: 2014-05

For Release: Monday, March 17, 2014 - 10:45am

Cambridge, MA - Almost 14 billion years ago, the universe we inhabit burst into existence in an extraordinary event that initiated the Big Bang. In the first fleeting fraction of a second, the universe expanded exponentially, stretching far beyond the view of our best telescopes. All this, of course, was just theory. **SPACE & COSMOS**

The New Hork Times

Space Ripples Reveal Big Bang's Smoking Gun

By DENNIS OVERBYE MARCH 17, 2014

17. März 2014, 17:34 Gravitationswellen

Signale aus der Geburtsstunde des Universums Von Patrick Illinger

Cambridge, MA - Almost 14 billic that initiated the Big Bang. In the far beyond the view of our best tel

January 30, 2015

Joint Analysis of BICEP2 data and Planck data

SCIENCE

The New Hork Times

Speck of Interstellar Dust Obscures Glimpse of Big Bang

By DENNIS OVERBYE JAN. 30, 2015

30 January 2015 Last updated at 20:54 GMT

Cosmic inflation: New study says BICEP claim was wrong Süddeutsche.de

By Jonathan Amos

Science correspondent, BBC News

Share

1. Februar 2015, 22:19 Kosmologie

Urknall-Forscher gestehen Irrtum ein

Wissen

Von <u>Marlene Weiß</u>

The search continues!!

WMAP

WMAP Spacecraft

Radiative Cooling: No Cryogenic System

- WMAP was launched on June 30, 2001
- The WMAP mission ended after 9 years of operation

Data Analysis

- Decompose temperature fluctuations in the sky into a set of waves with various wavelengths
- Make a diagram showing the strength of each wavelength

The Power Spectrum, Explained

Outstanding Questions

- Where does anisotropy in CMB temperature come from?
 - This is the origin of galaxies, stars, planets, and everything else we see around us, including ourselves
- The leading idea: quantum fluctuations in vacuum, stretched to cosmological length scales by a rapid exponential expansion of the universe called "cosmic inflation" in the very early universe

Starobinsky (1980); Sato (1981); Guth (1981); Linde (1982); Albrecht & Steinhardt (1982)

Cosmic Inflation

- In a tiny fraction of a second, the size of an atomic nucleus became the size of the Solar System
 - In 10⁻³⁶ second, space was stretched by at least a factor of 10²⁶

Stretching Micro to Macro

Quantum fluctuations on microscopic scales

Inflation!

- Quantum fluctuations cease to be quantum
- Become macroscopic, classical fluctuations

Scalar and Tensor Modes

A distance between two points in space

$$d\ell^{2} = a^{2}(t)[1 + 2\zeta(\mathbf{x}, t)][\delta_{ij} + h_{ij}(\mathbf{x}, t)]dx^{i}dx^{j}$$

- ζ: "curvature perturbation" (scalar mode)
 - Perturbation to the determinant of the spatial metric
- h_{ij}: "gravitational waves" (tensor mode)
 - Perturbation that does not change the determinant (area)

$$\sum_{i} h_{ii} = 0$$

Heisenberg's Uncertainty Principle

- You can borrow energy from vacuum, if you promise to return it immediately
- [Energy you can borrow] x [Time you borrow] = constant

Heisenberg's Uncertainty Principle

- [Energy you can borrow] x [Time you borrow] = constant
- Suppose that the distance between two points increases in proportion to a(t) [which is called the scale factor] by the expansion of the universe
- Define the "expansion rate of the universe" as

$$H \equiv \frac{\dot{a}}{a}$$
 [This has units of 1/time]

Fluctuations are proportional to H

- [Energy you can borrow] x [Time you borrow] = constant
- $H \equiv \frac{\dot{a}}{a}$ [This has units of 1/time]
- Then, both ζ and h_{ij} are proportional to H
- Inflation occurs in 10⁻³⁶ second this is such a short period of time that you can borrow a lot of energy!
 H during inflation in energy units is 10¹⁴ GeV

Expectations

- Inflation must end
- •Inflation predicts $n_s \sim 1$, but not exactly equal to 1. Usually $n_s < 1$ is expected
- •The discovery of n_s<1 has been the dream of cosmologists since 1992, when the CMB anisotropy was discovered and n_s~1 (to within 30%) was indicated

Slava Mukhanov said in his 1981 paper that n_s should be less than 1

Courtesy of David Larson

How do we know that primordial fluctuations were of quantum mechanical origin?

Testing Gaussianity

[Values of Temperatures in the Sky Minus 2.725 K]/ [Root Mean Square]

Since a Gauss distribution is symmetric, it must yield a vanishing **3-point function**

$$\langle \delta T^3 \rangle \equiv \int_{-\infty}^{\infty} d\delta T \ P(\delta T) \delta T^3$$

More specifically, we measure this using temperatures at three different locations and average:

$$\langle \delta T(\hat{n}_1) \delta T(\hat{n}_2) \delta T(\hat{n}_3) \rangle$$

Non-Gaussianity:

A Powerful Test of Quantum Fluctuations

- The WMAP data show that the distribution of temperature fluctuations of CMB is very precisely Gaussian
 - with an upper bound on a deviation of 0.2%
- With improved data provided by the Planck mission, the upper bound is now 0.03%

CMB Research: Next Frontier

Primordial Gravitational Waves

Extraordinary claims require extraordinary evidence.
The same quantum fluctuations could also generate gravitational waves, and we wish to find them

Quantum fluctuations and gravitational waves

- Quantum fluctuations generated during inflation are proportional to the Hubble expansion rate during inflation, H
- Variance of gravitational waves is then proportional to H²:

$$\langle h_{ij}h^{ij}\rangle \propto H^2$$

Tensor-to-scalar Ratio

$$r \equiv \frac{\langle h_{ij}h^{ij} \rangle}{\langle \zeta^2 \rangle}$$

- We really want to find this quantity!
- The upper bound from the temperature anisotropy data: r<0.1 [WMAP & Planck]

Energy Scale of Inflation

$$\langle h_{ij}h^{ij}\rangle \propto H^2$$

 Then, the Friedmann equation relates H² to the energy density (or potential) of a scalar field driving inflation:

$$H^2 = \frac{V(\phi)}{3M_{\rm pl}^2}$$

For example r=0.2 implies

$$V^{1/4} = 2 \times 10^{16} \left(\frac{r}{0.2}\right)^{1/4} \text{ GeV}$$

Has Inflation Occurred?

 We must see [near] scale invariance of the gravitational wave power spectrum:

$$\langle h_{ij}(\mathbf{k})h^{ij,*}(\mathbf{k})\rangle \propto k^{n_t}$$

with

$$n_t = \mathcal{O}(10^{-2})$$

Inflation, defined

- Necessary and sufficient condition for inflation = sustained accelerated expansion in the early universe
- Expansion rate: H=(da/dt)/a
- Accelerated expansion: $(d^2a/dt^2)/a = dH/dt + H^2 > 0$
- Thus, -(dH/dt)/H² < 1
- In other words:
 - The rate of change of H must be slow [n_t ~ 0]
 - [and H usually decreases slowly, giving n_t < 0]

CMB Polarisation

• CMB is [weakly] polarised!

Stokes Parameters

How many components?

- CMB: $T_{v} \sim v^{0}$
- Synchrotron: $T_v \sim v^{-3}$
- Dust: $T_v \sim v^2$
- Therefore, we need at least 3 frequencies to separate them

Seeing polarisation in the WMAP data

- Average polarisation data around cold and hot temperature spots
- Outside of the Galaxy mask [not shown], there are 11536 hot spots and 11752 cold spots
- Averaging them beats the noise down

Radial and tangential polarisation around temperature spots

- This shows polarisation generated by the plasma flowing into gravitational potentials
- Signatures of the "scalar mode" fluctuations in polarisation
- These patterns are called "E modes"

Planck Data!

E and B modes

- Density fluctuations
 [scalar modes] can
 only generate E modes
- Gravitational waves can generate both E and B modes

E mode

B mode

Physics of CMB Polarisation

- Necessary and sufficient conditions for generating polarisation in CMB:
 - Thomson scattering
 - Quadrupolar temperature anisotropy around an electron

Origin of Quadrupole

- Scalar perturbations: motion of electrons with respect to photons
- Tensor perturbations: gravitational waves

Gravitational waves are coming toward you!

What do they do to the distance between particles?

Two GW modes

 Anisotropic stretching of space generates quadrupole temperature anisotropy. How?

GW to temperature anisotropy

GW to temperature anisotropy

- Stretching of space -> temperature drops
- Contraction of space -> temperature rises

Then to polarisation!

Polarisation directions are parallel to hot regions

propagation direction of GW

Polarisation directions perpendicular/parallel to the wavenumber vector -> **E mode polarisation**

propagation direction of GW

Polarisation directions 45 degrees tilted from to the wavenumber vector -> **B mode polarisation**

Important note:

- Definition of h₊ and h_x depends on coordinates, but definition of E- and B-mode polarisation does not depend on coordinates
- Therefore, h₊ does not always give E; h_x does not always give B
 - The important point is that h₊ and h_x always
 coexist. When a linear combination of h₊ and h_x
 produces E, another combination produces B

Signature of gravitational waves in the sky [?]

CAUTION: we are NOT seeing a single plane wave propagating perpendicular to our line of sight

Signature of gravitational waves in the sky [?]

BICEP2: B signal

CAUTION: we are NOT seeing a single plane wave propagating perpendicular to our line of sight

BICEP2/Keck Array and Planck Collaboration (2015)

Courtesy of David Larson

Planck and BICEP2/Keck Collaborations (2015) Planck TT+lowP **B-mode limit added:** Planck TT+lowP+BKP Ratio (r) r<0.09 (95%CL) Planck TT+lowP+BKP+BAO Natural inflation Hilltop quartic model α attractors Power-law inflation ruled out! Scalar I Low scale SB SUSY ruled out! \mathbb{R}^2 inflation $V \propto \phi^3$ ruled out! $V \propto \phi^2$ ruled out! $V \propto \phi^{4/3}$ ensor-to $V \propto \phi$ $V \propto \phi^{2/3}$ $N_* = 50$ $N_* = 60$ 0.94 0.96 0.98 1.02 1.00

Primordial Tilt (n_s)

Current Situation

- Planck shows the evidence that the signal detected by BICEP2 is not cosmological, but is due to dust
- No strong evidence that the detected signal is cosmological

The search continues!!

JAXA

+ possibly NASA

LiteBIRD

2025- [proposed]

JAXA

+ possibly NASA

LiteBIRD

2025- [proposed]

Conclusion

- The WMAP and Planck's temperature data provide strong evidence for the quantum origin of structures in the universe
- The next goal: definitive evidence for inflation by an unambiguous measurement of the primordial B-mode polarisation power spectrum
- LiteBIRD proposal to JAXA: a focused, primordial B-mode CMB polarisation satellite in 2025
- COrE++ proposal to ESA's M5 call