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The search continues!!
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WMAP Science Team 
July 19, 2002

• WMAP was launched on June 30, 2001
• The WMAP mission ended after 9 years of operation 
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Data Analysis
• Decompose temperature 
fluctuations in the sky into a 
set of waves with various 
wavelengths 

• Make a diagram showing the 
strength of each wavelength
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The Power Spectrum, Explained





Outstanding Questions
• Where does anisotropy in CMB temperature come 

from? 

• This is the origin of galaxies, stars, planets, and 
everything else we see around us, including 
ourselves 

• The leading idea: quantum fluctuations in 
vacuum, stretched to cosmological length scales 
by a rapid exponential expansion of the universe 
called “cosmic inflation” in the very early universe



Cosmic Inflation

• In a tiny fraction of a second, the size of an atomic 
nucleus became the size of the Solar System 

• In 10–36 second, space was stretched by at least 
a factor of 1026

Starobinsky (1980); Sato (1981); Guth (1981); Linde (1982); Albrecht & Steinhardt (1982)



Stretching Micro to Macro

Inflation!

Quantum fluctuations on  
microscopic scales

• Quantum fluctuations cease to be quantum 

• Become macroscopic, classical fluctuations



Scalar and Tensor Modes
• A distance between two points in space 

• ζ: “curvature perturbation” (scalar mode) 

• Perturbation to the determinant of the spatial metric 

• hij: “gravitational waves” (tensor mode) 

• Perturbation that does not change the determinant (area)

d`
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Heisenberg’s  
Uncertainty Principle

• You can borrow energy from vacuum, if you 
promise to return it immediately 

• [Energy you can borrow] x [Time you borrow] = 
constant



Heisenberg’s  
Uncertainty Principle

• [Energy you can borrow] x [Time you borrow] = 
constant 

• Suppose that the distance between two points 
increases in proportion to a(t) [which is called the 
scale factor] by the expansion of the universe 

• Define the “expansion rate of the universe” as

H ⌘ ȧ

a
[This has units of 1/time]



Fluctuations are  
proportional to H

• [Energy you can borrow] x [Time you borrow] = 
constant 

•   

• Then, both ζ and hij are proportional to H 

• Inflation occurs in 10–36 second - this is such a short 
period of time that you can borrow a lot of energy! 
H during inflation in energy units is 1014 GeV

H ⌘ ȧ

a
[This has units of 1/time]
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Power Spectrum of  
Primordial Fluctuations
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Let’s parameterise like

Wave Amp. / `ns�1



COBE/DMR Four Year 
Power Spectrum (1996)

Multipole Moment, l
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WMAP 9-Year Only: 
ns=0.972±0.013 (68%CL)

2001–2010



South Pole Telescope
[10-m in South Pole]

Atacama Cosmology Telescope
[6-m in Chile]
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South Pole Telescope
[10-m in South Pole]

Atacama Cosmology Telescope
[6-m in Chile]

ns=0.965±0.010
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2009–2013

ns=0.960±0.007
First >5σ discovery of ns<1 from 

the CMB data alone



Expectations
•Inflation must end 
•Inflation predicts ns~1, but not exactly 
equal to 1. Usually ns<1 is expected 

•The discovery of ns<1 has been the 
dream of cosmologists since 1992, 
when the CMB anisotropy was 
discovered and ns~1 (to within 30%) 
was indicated Slava Mukhanov said in  

his 1981 paper that ns  
should be less than 1



WMAP(temp+pol)+ACT+SPT+BAO+H0
WMAP(pol) + Planck + BAO 

Courtesy of David Larson

ruled 
out!

No Evidence for 
Gravitational Waves in 

CMB Temperature 
Anisotropy



How do we know that 
primordial fluctuations were of 
quantum mechanical origin?



[Values of Temperatures in the Sky Minus 2.725 K] / [Root Mean Square]
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Quantum Fluctuations give a 
Gaussian distribution of  

temperatures.  

Do we see this  
in the WMAP data?



[Values of Temperatures in the Sky Minus 2.725 K] / [Root Mean Square]

Fr
ac

tio
n 

of
 th

e 
N

um
be

r o
f P

ix
el

s 
 H

av
in

g 
Th

os
e 

Te
m

pe
ra

tu
re

s

YES!!

Histogram: WMAP Data 
Red Line: Gaussian



Testing Gaussianity

[Values of Temperatures in the Sky Minus 
2.725 K]/ [Root Mean Square]
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Histogram: WMAP Data 
Red Line: Gaussian

Since a Gauss distribution 
is symmetric, it must yield a 
vanishing 3-point function

More specifically, we measure 
this using temperatures at 

three different locations and 
average:

h�T 3i ⌘
Z 1

�1
d�T P (�T )�T 3

h�T (n̂1)�T (n̂2)�T (n̂3)i



Non-Gaussianity:  
A Powerful Test of Quantum Fluctuations

• The WMAP data show that the distribution of 
temperature fluctuations of CMB is very precisely 
Gaussian 

• with an upper bound on a deviation of 0.2% 

• With improved data provided by the Planck 
mission, the upper bound is now 0.03%



CMB Research:  
Next Frontier

Primordial 
Gravitational Waves

Extraordinary claims require extraordinary evidence. 
The same quantum fluctuations could also generate gravitational 

waves, and we wish to find them



Quantum fluctuations and 
gravitational waves

• Quantum fluctuations generated during inflation are 
proportional to the Hubble expansion rate during 
inflation, H 

• Variance of gravitational waves is then proportional 
to H2:

hhijh
iji / H2



Tensor-to-scalar Ratio

• We really want to find this quantity!  

• The upper bound from the temperature 
anisotropy data: r<0.1 [WMAP & Planck]

r ⌘ hhijhiji
h⇣2i



Energy Scale of Inflation

• Then, the Friedmann equation relates H2 to the energy 
density (or potential) of a scalar field driving inflation:

hhijh
iji / H2

H2 =
V (�)

3M2
pl

• For example r=0.2 implies

V 1/4 = 2⇥ 1016
⇣ r

0.2

⌘1/4
GeV



Has Inflation Occurred?
• We must see [near] scale invariance of the 

gravitational wave power spectrum:

hhij(k)h
ij,⇤(k)i / knt

with

nt = O(10�2)



Inflation, defined
• Necessary and sufficient condition for inflation = sustained 

accelerated expansion in the early universe 

• Expansion rate: H=(da/dt)/a 

• Accelerated expansion: (d2a/dt2)/a = dH/dt + H2 > 0 

• Thus, –(dH/dt)/H2 < 1

• In other words:  

• The rate of change of H must be slow [nt ~ 0] 

• [and H usually decreases slowly, giving nt < 0]



CMB Polarisation

• CMB is [weakly] polarised!
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Stokes Q Stokes U

WMAP Collaboration

33 GHz



Stokes Q Stokes U
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41 GHz
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How many components?

• CMB: Tν ~ ν0 

• Synchrotron: Tν ~ ν–3 

• Dust: Tν ~ ν2 

• Therefore, we need at least 3 frequencies to 
separate them



Seeing polarisation in the 
WMAP data

• Average polarisation 
data around cold and 
hot temperature spots 

• Outside of the Galaxy 
mask [not shown], there 
are 11536 hot spots 
and 11752 cold spots 

• Averaging them beats 
the noise down 



Radial and tangential 
polarisation around 
temperature spots
• This shows polarisation 

generated by the plasma 
flowing into gravitational 
potentials 

• Signatures of the “scalar 
mode” fluctuations in 
polarisation 

• These patterns are called 
“E modes”

WMAP Collaboration



Planck Data!
Planck Collaboration



E and B modes

• Density fluctuations 
[scalar modes] can 
only generate E modes 

• Gravitational waves 
can generate both E 
and B modes

B modeE mode

Seljak & Zaldarriaga (1997); Kamionkowski et al. (1997)



Physics of CMB Polarisation

• Necessary and sufficient conditions for generating 
polarisation in CMB: 

• Thomson scattering 

• Quadrupolar temperature anisotropy around an electron

By Wayne Hu



Origin of Quadrupole

• Scalar perturbations: motion of electrons 
with respect to photons 

• Tensor perturbations: gravitational waves



Gravitational waves are 
coming toward you!

• What do they do to the distance between particles?



Two GW modes

• Anisotropic stretching of space generates 
quadrupole temperature anisotropy. How?



GW to temperature 
anisotropy

electrons



GW to temperature 
anisotropy
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• Stretching of space -> temperature drops 

• Contraction of space -> temperature rises



Then to polarisation!
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• Polarisation directions are parallel to hot 
regions



propagation direction of GW

h+=cos(kx)

Polarisation directions perpendicular/parallel to the 
wavenumber vector -> E mode polarisation



propagation direction of GW

hx=cos(kx)

Polarisation directions 45 degrees tilted from to the 
wavenumber vector -> B mode polarisation



Important note:
• Definition of h+ and hx depends on coordinates, but 

definition of E- and B-mode polarisation does not 
depend on coordinates 

• Therefore, h+ does not always give E; hx does not 
always give B 

• The important point is that h+ and hx always 
coexist. When a linear combination of h+ and hx 
produces E, another combination produces B



CAUTION: we are NOT seeing a single plane wave 
propagating perpendicular to our line of sight

Signature of gravitational 
waves in the sky [?]

BICEP2 Collaboration



CAUTION: we are NOT seeing a single plane wave 
propagating perpendicular to our line of sight

Signature of gravitational 
waves in the sky [?]

if you wish, you could associate 
one pattern with one plane wave… 

BUT
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BICEP2 and Keck Array (BK) Data
BK, cleaned by the Planck data 

at 353 GHz

B-mode due to  

gravitational lensing

BICEP2/Keck Array and Planck Collaboration (2015)



WMAP(temp+pol)+ACT+SPT+BAO+H0
WMAP(pol) + Planck + BAO 

Courtesy of David Larson

ruled 
out!

No Evidence for 
Gravitational Waves in 

CMB Temperature 
Anisotropy



WMAP(temp+pol)+ACT+SPT+BAO+H0
WMAP(pol) + Planck + BAO ruled 

out!

Planck and BICEP2/Keck Collaborations (2015)

ruled out!
ruled out!

ruled out!
ruled out!

B-mode limit added:
r<0.09 (95%CL)



• Planck shows the evidence that the signal 
detected by BICEP2 is not cosmological, but 
is due to dust 

• No strong evidence that the detected signal 
is cosmological

The search continues!!

Current Situation
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ESA
2025– [proposed]

JAXA
+ possibly NASA

LiteBIRD
2025– [proposed]



ESA
2025– [proposed]

JAXA
+ possibly NASA

ESA
+ possibly JAXA/NASA

Tried M4. 
Now thinking about M5… “COrE++”

LiteBIRD
2025– [proposed]



Conclusion
• The WMAP and Planck’s temperature data provide 

strong evidence for the quantum origin of 
structures in the universe 

• The next goal: definitive evidence for inflation by an 
unambiguous measurement of the primordial B-mode 
polarisation power spectrum 

• LiteBIRD proposal to JAXA: a focused, primordial B-
mode CMB polarisation satellite in 2025 

• COrE++ proposal to ESA’s M5 call


